9 to 5 56538

[This question paper contains 8 printed pages.]

Your Roll No.

Sr. No. of Question Paper : 1233C
Unique Paper Code : 32357507

Name of the Paper	DSE -2 Probability Theory
and Statistics	

Name of the Course : CBCS (LOCF) B.Sc. (H) Mathematics
Semester : V
Duration : 3 Hours Maximum Marks : 75
Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt all questions selecting any two parts from each questions no.'s 1 to 6 .
3. Use of scientific calculator is permitted.
(iii) Let the random variables X and Y have the joint pdf

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{lc}
6 \mathrm{y} & \text { if } 0<\mathrm{y}<\mathrm{x}<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the $E(Y \mid x)$ and $E[E(F \mid x)]$.
3.
(i) Let (X, y) be a random vector such that the variance off is finite. Then show that $\operatorname{Var}[\mathrm{E}(\mathrm{Y} \mid \mathrm{X})] \leq \operatorname{Var}(\mathrm{Y})$.
(ii) If X is a binomial variate with parameter n and p then prove that
$\mu_{\mathrm{r}+1}^{\prime}=\left[n p \mu_{\mathrm{r}}^{\prime}+\mathrm{pq} \frac{\mathrm{d} \mu_{\mathrm{r}}^{\prime}}{\mathrm{dp}}\right]$, where $\mu_{\mathrm{r}}^{\prime}=\mathrm{E}\left[\mathrm{x}^{\mathrm{r}}\right]$ and r is a non-negative integer.
(iii) Let. the random variables X and Y have the linear conditional means $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})=4 \mathrm{x}+3$ and
$E(X \mid y)=\frac{1}{16} y-3$. Find the mean of X, mean of Y, the correlation coefficient.
4. (i) Let the random $:$ joint pdf
$f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}+x_{2} & \text { if } 0<x_{1}<1,0<x_{2}<1 \\ 0, & \text { elsewhere }\end{cases}$
Show that X_{1} and X_{2} are not independent.
(ii) State and prove the Chebyshev's Theorem.
(iii) If the probability is 0.25 that an applicant for driver's license will pass the road test on the given try, what is the probability that an applicant

1233

will finally pass the lest on the fourth try?
5. (i) Calculate the correlation coefficient for the following age (in years) of husband's (X) and

X	23	27	28	28	29	30	31	33	35	36
Y	18	20	22	27	21	29	27	29	28	29

(ii) If X and Y have a bivariate normal distribution, the conditional density of Y given $\mathrm{X}=\mathrm{x}$ is a normal distribution with the mean,

$$
\mu_{Y \mid x}=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-\mu_{1}\right)
$$

and the variance

$$
\begin{equation*}
\sigma_{\mathrm{Y} \mid \mathrm{X}}^{2}=\sigma_{2}^{2}\left(1-\rho^{2}\right) \tag{6.5}
\end{equation*}
$$

(iii) The joint density of X_{1}, X_{2} and X_{3} is given by

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)= \begin{cases}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \mathrm{e}^{-\mathrm{x}_{3}} & \text { if } 0<\mathrm{x}_{1}<1,0<\mathrm{x}_{2}<1,0<\mathrm{x}_{3} \\ 0, & \text { elsewhere }\end{cases}
$$

Find the regression equation of X_{2} on X_{1} and X_{3}.
6. (i) Two fair dice are tossed 600 times. Let X denote the number of times a total of 7 occurs. Use Central limit theorem to find $\mathrm{P}[95 \leq \mathrm{X} \leq 115]$.
(ii) To show how an exponential distribution might arise in practice, If random variable X has an exponential distribution with parameter 0 then find its mean, variance and moment generating function. If X has exponential distribution with mean 2 then find $\mathrm{P}[\mathrm{X}<1]$.
(iii) If X is a random variable having a binomial distribution with parameter n and θ, then the
moment generating function of $Z=\frac{X-n \theta}{\sqrt{n \theta(1-\theta)}}$
approaches that of the standard normal distribution when $n \rightarrow \infty$.

