[This question paper contains 4 printed pages.]
Your Roll No

Sr. No. of Question Paper : 1049
 Semester
 Duration: 3 Hours
 Instructions for Candidates

Name of the Course : B.Sc. (H) Mathematics

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. All questions are compulsory.
3. Question No. $\mathbf{1}$ has been divided into $\mathbf{1 0}$ parts and each part is of $\mathbf{1 . 5}$ marks.
4. Each question from Q. Nos. 2 to $\mathbf{6}$ has $\mathbf{3}$ parts and each part is of 6 marks. Attempt any two parts from each Question.
5. State true (T) or false (F). Justify your answer in brief.
(i) A group of order $\mathrm{p}^{2}, \mathrm{p}$ is a prime is always isomorphic to $\mathrm{Z}_{\mathrm{p} 2}$.
P.T.O.
(ii) A group of order 15 is always cyclic.
(iii) A group of order 14 is simple.
(iv) The smallest positive integer n such that there are two non-isomorphic groups of order n is 6 .
(v) Every inner automorphism induced by an element ' a ' of group G is an automorphism of G.
(vi) A abelian group of order 12 must have an element of order either 2 or 3.
(vii) $\mathrm{U}(105)$ is isomorphic to external direct product of $U(21)$ and $U(5)$.
(viii) Center of a group G is always a subgroup of normalizer of A in G, where A is any subset of G.
(ix) $\operatorname{Aut}\left(\mathrm{Z}_{10}\right)$ is a cyclic group of automorphisms of G.
(x) The largest possible order for an element of $\mathrm{Z}_{20} \oplus \mathrm{Z}_{30}$ is 60 .
6. (a) Define inner automorphism induced by an element ' a ' of group G and find the group of all inner automorphisms of D_{4}.
(b) Defile the characteristic and the commutator subgroup of a group. Prove that the centre of a group is characteristic subgroup of the group.
(c) Let G^{\prime} be the subgroup of commutators of a group G. Prove that $\mathrm{G} / \mathrm{G}^{\prime}$ is nbelian. Also, prove that if G / N is abelian, then $\mathrm{N} \geq \mathrm{G}^{\prime}$.
7. (a) Determine the number of cyclic subgroups of order 15 in $\mathrm{Z}_{90} \oplus \mathrm{Z}_{36}$.
(b) Define the internal direct product of the subgroups H and K of a group G. Prove that every group of order p^{2}, where p is a prime, is isomorphic to $\mathrm{Z} \mathrm{p}^{2}$ or $\mathrm{Zp} \oplus \mathrm{Zp}$ (external direct product of Zp with itself).
(c) Consider the group $G=\{1,9,16,22,29,53,74$, $79,81\}$ under multiplication modulo 91 . Determine the isomorphism class of G.
8. (a) Show that the additive group Z acts on itself by $z . a=z+a$ for all $z, a \in Z$.
(b) Show that an action is faithful if and only if its kernel is the identity subgroup.
(.c) Let G be a group. Let H be a subgroup of G . Let G act by left multiplication on the set A of all left cosets of H in G. Let π_{11} be the permutation representation of G associated with this action. Prove tha,
(i) G acts transitively on A
(ii) The stabilizer of the point $1 H \subseteq A$ is the subgroup H.
(iii) $\operatorname{Ker} \pi_{H}=\cap_{\varepsilon \epsilon G} \times H \%^{-1}$
9. (a) Let G be a permutation group on a set $A(G$ is subgroup of S_{A}), let $\sigma \in G$ and let $a \in A$. Prove that $\sigma G_{a} \sigma^{-1}=G_{\sigma(a)}$, here G_{x} denotes stabilizer of \dot{x}. Deduce that if G acts transitively on A then $\cap_{\mathrm{x} \in \mathrm{G}} \sigma \mathrm{G}_{\mathrm{a}} \sigma^{-1}=1$.
(b) Show that every group of order 56 has a proper nontrivial normal subgroup.
(c) State Index theorem and prove that a group of order 80 is not simple.
10. (a) State the Class Equation for a finite group G. and use it to prove that p-groups have non trivial centers.
(b) Prove that group of order 255 is always cyclic.
(c) Show that the alternating group As does not contain a subgroup of order 30,20 , or 15 .
