PARTIAL DIFFERENTIAL EQUATION - II

Ques 1.

Prove that a family of spheres $x^2 + y^2 + (z^2-c^2) = r^2$ satisfies the linear partial differential equation of first order xp - yq=0.

Ques 2.

Prove that the family of right circular cones whose axes coincide with the z-axis $x^2+y^2=(z^2-c^2)$ (tan α)² satisfies the linear partial differential equation of first order xp - yq=0.

Ques 3. Calculate the general solution of the first order linear partial differential equation $y^2up+u^2xp=-xy^2$.

Ques 4. Calculate the general solution of the first order linear partial differential equation y^2u_x - xyu_y = x (u-2y).

Ques 5. Find the solution of the equation $x u_x + y u_y = 2xy$. With Cauchy data on u=2 and $y=x^2$.

Ques 6. Solve the Cauchy problem $(y+u)u_x+u_y=(x-y)$ with u=1+x on y=1.

Ques 7. Use the separation of variables u(x, y) = X(x) + Y(y) to solve the equation $u_x^2 + u_y^2 = u$.

Ques 8.

Using the method of separation of variables u(x, y) = X(x).Y(y) to solve the following equations $u_x + u = u_y$.

Ques 9. (a) Show that the equation $u_{tt} + \alpha u_t = c^2 u_{xx}$ represents the

damped wave equation of a string where the damping force is directly

proportional to the velocity and α is a constant.

(b) Show that for a restoring force which is directly proportional to the

displacement of a string the resulting equation is $u_{tt} + \alpha u_t + bu = c^2 u_{xx}$

Where b is a constant.

Ques 10. Derive the one – dimensional heat equation, u_t = ku_{xx}

where k is a constant and also show that when the heat lost by radioactive exponential decay of the material in the bar is also considered then the one-dimensional heat equation becomes, $u_t = ku_{xx} + e^{-\alpha x}$ where h and a are constant.

Ques 11. Write the one – dimensional heat equation that could be used to determine the temperature in a flat circular disk with the flat surface insulated.

Ques 12. Express Laplace's equation using spherical coordinates.

Ques 13. A tight string 2 m long with a = 30 m/s is initially at rest but is given an initial velocity of 300 sin 4 π x from its equilibrium position. Determine the maximum displacement at the x = 1/8 m location of the string.

Ques 14. Solve the initial boundary – value problem $Z_{tt}=c^2z_{xx}$, 0< x< t, t>0 Z(x, 0)=x(1-x), $z_t(x, 0)=0$, 0<=x<=1 Z(0,t)=z(1,t)=0, t>0.

Ques 15 Consider the initial boundary – value problems

$$Z_{tt}=c^2z_{xx} f(x), 0 < x < l, t > 0$$

 $Z(x, 0) = f(x), z_t(x, 0) = g(x), 0 < = x < = l$
 $Z(0, t) = a, z(l, t) = b, t > 0$

Ques 16. A tight string, π m long and fixed at both ends, is given an initial displacement f(x) and an initial velocity g(x). Find an expression for z(x, t).

Ques 17. Solve the initial boundary – value problem $Z_{tt}=c^2z_{xx},\ 0< x<\Pi,\ t>0$ $Z(x,\ 0)=3$ Sinx, $z_t(x,\ 0)=0$, $0<=x<=\Pi$ $Z(0,t)=z(\Pi,t)=0$, t>0 .

Ques 18. A long copper rod with insulated lateral surface has its left end maintained at a temperature of 00 C and its right end, at x = 2m, maintained at 100° C. Determine the temperature as a function of x and t if the initial condition is given by

T(x,0) = 100x, 0 < x < 1 and 100, for 1 < x < 2.

Ques 19. Solve the initial boundary – value problem $Z_{tt}=c^2z_{xx},\ 0< x<\Pi,\ t>0$ $Z(x,\ 0)=0,\ z_t(x,\ 0)=8\ sinx^2,\ 0<=x<=\Pi$ $Z(0,t)=z(\Pi,t)=0,\ t>0$.

Ques 20. Solve the partial differential equation $u_{xx}+2u_{xy}-3u_{yy}=0$ with the given initial conditions $u(x, 0)=\sin x$, $u_y(x,0)=x$.

Ques 21. Transform the equation to the form z_{xx} - z_{yy} + $3z_x$ - $2z_y$ =0 , v_{rs} = cv, c=constant by introducing the new variable v=- $ze^{-(ar+bs)}$ where a and b are undetermined coefficients.

Ques 22. Reduce the following equations in the canonical form after classifying given equation $y^2 z_{xx} + x^2 z_{yy} = 0$.

Ques 23. Determine the general solution of the following equation $y^2 z_{xx} + x^2 z_{yy} = 0$.

Ques 24. Determine the general solution of the following equation $z_{xxx} + z_{yyy} = 0$.

Ques 25. Consider the equation to reduce this equation to canonical form

$$z_{xx} + z_{yy} - 2z_{xy} - 3z_x - 6z_y = 9(2x - y).$$

Ques 26. Solve the initial boundary-value problem

$$u_{tt}$$
- $4u_{xx}$ = 0, $0 < x < \infty$, $t > 0$
 $u(x, 0) = x^4$, $0 \le x \le \infty$,
 $u_t(x, 0) = 0$, $0 \le x \le \infty$,
 $u(0, t) = 0$, $t \ge 0$.

Ques 27. Write the two – dimensional heat equation that could be used to determine the temperature in a flat circular disk with the flat surface insulated.

Ques 28. Solve the initial boundary – value problem $Z_{tt}=c^2Z_{xx}$, 0< x< t, t>0 Z(x,0)=x, $z_t(x,0)=0$, 0< = x< = 1 Z(0,t)=z(1,t)=0, t>0

Ques 29. Find the solution of the equation $x u_x + y^2 u_y = 2xy$. With Cauchy data on u=3 and $y=x^2$.

Ques 30. Transform the equation to the form $3z_{xx}+7z_{yy}+2z_x+z_y=0$, $v_{rs}=cv$, c=constant by introducing the new variable $v=-ze^{-(ar+bs)}$ where a and b are undetermined coefficients.

Ques 31. Calculate the general solution of the first order linear partial differential equation $yup + uxp = -xy^2$.

Ques 32. Solve the signal problem governed by the wave equation

$$4u_{tt}-3u_{xx}=0, 0 < x < \infty, t > 0$$

$$u(x, 0) = x, 0 \le x \le \infty,$$

$$u_t(x, 0) = 0, 0 \le x \le \infty,$$

$$u(0, t) = 0, t \ge 0.$$

Ques 33. Use the separation of variables u(x, y) = X(x) + Y(y) to solve the equation $4u_x^2 + 5u_y^2 = u$.

Ques 34. Consider the equation to reduce this equation to canonical form

$$z_{xx} + x^2 z_{yy} = 0.$$