[ALGEBRA -II]

[Group Theory-I]

- Q.1. Write out a complete multiplication Table for D₃
- Q.2. Is D₃ Abelian?
- Q.3. In D_n , explain geometrically why rotation followed by a rotation must be a rotation .
- Q.4. Show that {1,2,3,} under multiplication modulo 4 is not a group but that {1,2,3,4} under multiplication modulo 5 is a group.
- Q.5. Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all a and b in G.
- Q.6. Prove that if $(ab)^2=a^2b^2$ in a group G, then ab=ba.
- Q.7. Prove that in any group, an element and inverse have the same order.
- Q.8. Show that $Z_{10} = <3 > = <7 > = <9 >$. Is $Z_{10} = <2 >$?
- Q.9. Find a group that contain elements a and b such that |a|=|b|=2 and
 - (a) |ab|=3 (b) |ab|=4 (c) |ab|=5

Can you see relationship b/w |a|,|b| and |ab|?

- Q.10. Find a cyclic subgroup of order 4 in U(40).
- Q.11. Find a non-cyclic subgroup of order 4 in U(40).
- Q.12. Let G be a finite group with more than one element .Show that G has an element of prime order.
- Q.13. Find all generators of Z_6 , Z_8 , and Z_{20} .
- Q.14. List the elements of the subgroups (20) and (10) in Z_{30} .
- Q.15. Find an example of a non-cyclic group, all of whose proper subgroups are cyclic.
- Q.16. Suppose that a has infinite order. Find all generators of the subgroup (a³).

- Q.17. List the cyclic subgroups of U(30).
- Q.18. Prove that a group of order 3 must be cyclic.
- Q.19. Determine the subgroup lattice for Z₁₂.
- Q.20. Let p be a prime and let G be an alelian group. Show that the set of all elements whose orders are powers of p is a subgroup of G.
- Q.21. List all the element of Z₄₀ That have order 10.
- Q.22. Let |x|=40. list all the elements of $\langle x \rangle$ that have order 10.
- Q.23. Prove that, in any group, |ab|=|ba|.
- Q.24. Prove that a group of order 4 is abelian.
- Q.25. If p is an odd prime, prove that there is no group that has exactly p elements of order p.
- Q.26. How many homomorphisms are there from Z_{20} onto Z_8 .
- Q.27. How many homomorphisms are there from Z_{20} onto Z_{10} .
- Q.28. Supose that G is a finite group and that Z_{10} Is a homomorphic image of G. What can we say about |G|?
- Q.29. Determine all homomorphic images of D₄.
- Q.30. State and prove first isomorphism theorem.
- Q.31. Prove that every group of order 65 is cyclic.
- Q.32. Show that $x^2 + x + 4$ is a irreducible over Z_{11} .
- Q.33. Prove that if W is a subspace of finite dimensional vector space v, then dim w+ dim w^0 =dim v.
- Q.34. Let H be a non-empty finite subset of a group G. Prove that H is a sub group of G if H is closed under the operation of G.
- Q.35. Show that any infinite cyclic group is isomorphic to (Z,+).
- Q.36. Find Aut (Z₁₀).