Question 1:- Show that $\lim_{x\to 0} [x\sin(1/x)]=0$.

Question 2:-If function $f:1R\rightarrow 1R$ and C belongs to 1R be a cluster point then lim (x f(x) = L if and only if $\lim x f(x+c) = L$.

Question 3:- If $f(x) = e^{(1/x)} - 1/e^{(1/x)+1}$ when $x \ne 0$ and f(x) = 0, when x = 0, then check the function is discontinuous at x=0.

Question 4:-If f(x) = |x| + |x-1|, then check the function is continuous at x=0, x=1.

Question 5:-If lim $x^n=c^n$, n=0,1,2,3,4,5 then prove that p(x) is polynomial function of x is continuous for all Chelonf to 1R.

Question 6:-Let A contains in 1R , let function f:A \rightarrow 1R and let F(x) \geq 0 for all x belon to A; we let \forall f be defined for xeA.

$$\forall f(x) = \forall (f(x))$$

- a.) If f is continuous at ceA, \forall f is continuous at C .
- b.) If f is continuous at A , Vf is continuous on A.

Question 7:-Show that every polynomial of odd degree with real co-efficient has at least one real root .

Question 8:-Let $f(x)=x^2$, xe1R, Show that f is uniform continuity on every closed and finite interval but it is not uniform continuity on 1R.

Question 9:-Show that $f(x)=1/x^2$ is uniform continuity on $[a,\infty)$, a >0.

Question 10:-Prove that $f(x) = \sin x^2$ is not uniform continuity on $[0, \infty)$.

Question 11:-Give an example to show the function that has right hand limit but not has left hand limit.

Question 12:-Prove that $h(x) = [\sin x^k]^m$, m, ke1N is differentiable.

Question 13:- Define f:1R \rightarrow 1R as f(x) = x^5 +4x +3 .As f is continuous and strictly monotone increasing function, Therefore inverse of f^(-1) that is g exist.

Question 14:-Show that between any two roots of sin(x) = 0 there exist a root of cos(x) = 0 and between any two roots of cos(x) = 0 there exist a root of sin(x) = 0.

Question 15:-Show that between any two roots of $e^{(x)}\cos(x)=1$ there exist at least one root of $e^{(x)}\sin(x)=1$.

Question 13:-Define f:1→

- Q 1. Using the mathematical induction prove the following:
 - a) $Cos(n\pi) = (-1)^n$
 - b) $a^{m+n}=a^m a^n$, where $a \in R$ and $m, n \in N$
- Q 2. Supremum of a set if exists, is unique.
- Q 3. Let S be any non-empty subset of R. Then an upper bound u of S is the supremum of S if and only if for every $\varepsilon > 0$ there exists an $s_0 \in S$ such that $u \varepsilon < s_0$
- Q 4. Let A and B are two non-empty bounded subsets of R and let $A + B = \{a + b : a \in A, b \in B \}$ Then
 - 1. $\sup (A + B) \sup (A) + \sup (B)$
 - 2. inf (A +B) inf (A) +inf (B)
- Q 5. Let S be a non-empty bounded subset of R and let a>0 be any real number in R and let $aS = \{as: s \in S\}$. then prove that 1. Sup (aS) = a sup (S) = a inf (S)
- Q 6. Let S and T be two non-empty subsets of R such that $s \le t$ for each $s \in S$ and $t \in T$. Then prove that $\sup(S) \le \inf(T)$
- Q 7. Let $S = \{x \in R : x > 1\}$. Show that S has a lower bounds, but has no upper bound. Also find the inf (S).
- Q 8. Find the supremum and infimum of the following sets.
 - 1. $S = (0, 1] \cup \{3\}$
 - 2. S =(3,4) ∪{2}
- Q 9. If $x \in R$, then there exists $n_x \in N$ such that $x < \text{exists } x < n_x$.
- Q 10. The set of natural numbers N is unbounded.
- O.11. If a and b are real numbers with a < b then there exists an irrational number s such that a < s < b.
- Q 12. Prove that there exists a positive real numbers u such that $u^2 = 2$.
- Q 13 If S is a non-empty subset of R that contains at least two points and has the property if $a,b\in S \text{ , and a } b < then \text{ [} a,b\text{]}\subseteq S \text{ . Then S is an interval.}$
- Q 14. If $x, y \in [a, b]$. Then show that $|x-y| \le b-a$
- Q 15. If S = [x, y] and T = [a, b] are closed interval in R. Then show that $S \subseteq T$ if and only if

 $a \le x$ and $y \le b$.

- Q 16. Show that the sequence of intervals [0,1/n] for $n \in \mathbb{N}$ is nested.
- Q 17. Let $l_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals. Then the intersection of all of these intervals is either a closed interval or a single point.
- Q 18. Prove that R the set of real numbers is not countable.
- Q 19. If S is a non-empty subset of R. Show that S is bounded if and only if there exists a closed bounded interval I such $S \subseteq I$.
- Q 20. Every infinite bounded subset of real numbers has a limit point.
- Q 21. Give an example of an infinite bounded set which has a limit point.
- Q 22. Does there exists an infinite unbounded set having a limit point
- Q 23. A subset A of I is closed if and only if it contain all of its limit point
- Q 24. A non-empty bounded closed subset A of I contains its supremum as well as its infimum.
- Q 25. The derived set of any set is always close
- Q 26. Show that $\lim 1/n = 0$
- Q 27. Give examples of sets A and A such tha
- Q 28. Show that the set of integers has no limit point.
- Q 29. Give an example of a set whose derived set is an infinite bounded set.
- Q 30. Show that the sequence (x_n) where $x_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}}$ converges. Also find

Q 31. If (x_n) is a convergent sequence of non-negative numbers such that $\lim x_n = x$ then

- Every convergent sequence is bounded.
- Q 33. Show that the sequence $(x_n) = (-1)^n$ does not converge.
- Q 34. Prove that the sequence (x_n) where $x_n = 0$ when n is odd and $x_n = 1$ when n is even, does not converge.
- Q 35. Show that series 2 2 + 2 + ---- oscillates .
- Q 36. Show that series $1 + r + r^2 + ---- (r > 0)$ converges if 0 < r < 1 and diverges if $r \ge 1$.