This question paper contains $4+2$ printed pages]

Roll No.

§. No. of Question Paper : 92
Unique Pa; jer Code : 32351303

Name of the Piper

Name of the Course
\circ B.Sc. (Hons.) Mathematics

Semester
: III

Duration: $\mathbf{3}$ Hours
(Write your Fill No. on the top immediately on receipt of titis question paper)
All sections are compulsory.

All questions carry equal marks.
Section I:

At emp any six questions from this section.

1. Let f tee the function defined by $f(x, y)=\frac{x^{2}+2 y^{2}}{x^{2}+y^{2}}$ for

$$
(x, y) \neq(0,0)
$$

(a) Find $\lim _{(x, y) \rightarrow(2,1)} f(x, y)$.
(b) Trove that f has no limit at $(0,0)$.
2. The temperature at the point (x, y) on a given metal plate in the $x y$-plane is determined according to the formula $T(x, y)=x^{3}+2 x y^{2}+y$ degrees. Compu e the rate at which the temperature changes with distance if we start at $(2,1)$ and move :
(a) parallel to the vector \mathbf{j}.
(b) parallel to the vector \mathbf{i}.
3. The Company sells two brands X and Y of a commercial soap, in thousand-pound units. If x uni's of brand X and y units of brand Y are sold, the unit price for brand X is $p(x)=4,000-500 x$ and for brand Y is $q(\nu)=3,000-450 y$.
(a) Find the total revenue R in terms of p and q.
(b) Suppose the brand X sells for $\$ 50 C$ per unit and brand Y sel's for $\$ 750$ per unit. Estimate the change in total revenue if the unit prices are increasi:d by $\$ 20$ for brand X and $\$ 18$ for brand Y .

$$
w \leqslant f\left(\frac{r-s}{s}\right)
$$

4 If

show that

$$
r \frac{\partial w}{\partial r}+s \frac{\partial w}{\partial s}=0
$$

5. Find the directional derivative of $f(x, y)=e^{x^{2} y^{2}}$ at $\mathrm{P}(1,-1)$ in the direction toward $Q(2,3)$.
6. Find the absolute extrema of $f(x, y)=2 \sin x+5 \cos y$ in the rectangular region with vertices $(0,0),(2,0),(2,5)$ and $(0,5)$.
7. Let $\mathbf{R}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=\|\mathbf{R}\|$, evaluate $\operatorname{div}\left(\frac{1}{r^{3}} \mathbf{R}\right)$.

Section II

Attempt any five questions from this section.
8. By using iterated integral, compute

$$
\iint_{\mathrm{R}} x \sqrt{1-x^{2}} e^{3 y} d \dot{\mathrm{~A}}
$$

Where R is the rectatiglef $0 \leq x \leq 1,0 \leq y \leq 2$.
9. Evaluate the double integral :

$$
\iint_{D} \frac{d A}{y^{2}+1} .
$$

where D is the triangular region bounded by $y=-x$ and $y=2$.
10. Evaluate the double integral

$$
\int_{0}^{2} \int_{y}^{\sqrt{8-y^{2}}} \frac{1}{\sqrt{1+x^{2}+y^{2}}} d x d y
$$

by converting to polar co-ordinates.
11. Find the volume of the tetrahedron T bounded by the plane $2 x+y+3 z=6$ and the co-ordinates plane $x=0, y=0$ and $z=0$.
12. Find the volume of the solid D bounded by the paraboloid $z=1-4\left(x^{2}+y^{2}\right)$ and the $x y$-plane.
13. Evaluate

$$
\iint_{D}(x+y)^{5}(x-y)^{2} d y d x
$$

by using change of variable $u=x+y$ and $v=x-y$, where D^{\prime} is the region in th: $x y$-plane which is bounded by the co-ordinate axes and the :ine $x+y=1$.

(5)

Section III

Altemp any four questions from this section.
14. Evaluate the line integral

$$
\int_{\mathrm{C}} \mathbf{F} \cdot d \mathbf{R},
$$

where

$$
\mathrm{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} i-\frac{y}{\sqrt{x^{2}+y^{2}}} J
$$

and C is the: quarter circle path $x^{2}+y^{2}=a^{2}$, traversed from $(a, 0)$ to $(0, a)$.
15. Show that the vector field

$$
\mathbf{F}(x, y, z)=\langle\sin z,-z \sin y, x \cos z+\cos y\rangle
$$

is conservat ve and evaluate

$$
\int_{\mathrm{C}} \mathbf{F} \cdot d \mathbf{R}
$$

for any piecewise smooth path joining $A(1,0,-1)$ to $B(0,-1,1)$.

