| Name of Course | $:$ CBCS B.Sc. Hons Mathematics |
| :--- | :--- |
| Unique Paper Code | $: \mathbf{3 2 3 5 1 3 0 2}$ |
| Name of Paper | $:$ BMATH306-Group Theory-1 |
| Semester | $:$ III |
| Duration | $: \mathbf{3}$ hours |
| Maximum Marks | $: \mathbf{7 5}$ marks |

## Attempt any four questions. All questions carry equal marks.

1. Let $A$ be a non-empty set and $\langle G,$.$\rangle be a group. Let F$ be the set of all functions from $A$ to $G$. Define an operation $*$ on $F$ as follows:

$$
\text { For } f, g \in F \text {, let } f * g: A \rightarrow G \text { as }(f * g)(x)=f(x) . g(x) \forall x \in A \text {. }
$$

Prove that $\langle F, *\rangle$ is a group.
Find the inverse of $\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$ in $G L\left(2, \mathbb{Z}_{5}\right)$, the group of $2 \times 2$ non-singular matrices over $\mathbb{Z}_{5}$. Verify the answer by direct calculation.

Describe the group of symmetries of a non-square rectangle and draw its Cayley's table.
2. Let a be an element of a group such that $|a|=3$, prove that $C(a)=C\left(a^{2}\right)$. Give an example to show that the conclusion fails if $|a|=4$.

Find the orders of each of the elements of $U(14)$. Show that it is cyclic and find all its generators.
3. Define Centre $Z(G)$ of a group $G$ and prove that $Z\left(S_{4}\right)=\{e\}$.

For $n>2$, show that every even permutation in $S_{n}$ is a product of 3-cycles.
Let $\sigma=(1,5,7)(2,5,3)(1,6)$. Express $\sigma^{17}$ as a cycle.
4. Prove or disprove any six, stating the results used
(i) $\langle\mathbb{R},+\rangle \approx\langle\mathbb{Q},+\rangle$,
(ii) $\langle\mathbb{Q},+\rangle \approx\langle\mathbb{Z},+\rangle$,
(iii) $\langle\mathbb{R},+\rangle \approx\langle\mathbb{R}+,$.$\rangle ,$
(iv) $D_{4} \approx$ Group $Q$ of Quaternions,
(v) $U(20) \approx D_{4}$,
$(\mathrm{vi}) U(8) \approx U(12)$,
(vii) $U(10) \approx \mathbb{Z}_{4}$,
(viii) $\frac{G L(2, \mathbb{R})}{S L(2, \mathbb{R})} \approx \mathbb{R}^{*}$.
5. Let $H$ be a subgroup of a group $G$. Prove that $a H \mapsto H a^{-1}$ is a bijective mapping from the set of all left cosets of $H$ in $G$ to the set of all right cosets of $H$ in $G$. Can the same be said for $a H \mapsto H a$ ?

If $G$ is a non-abelian group of order 8 with $Z(G) \neq\{e\}$, prove that $|Z(G)|=2$.
6. Let $N$ be a normal subgroup of $G$ and $M$ be a normal subgroup of $N$. If $N$ is cyclic, prove that $M$ is a normal subgroup of $G$. Show by an example that the conclusion fails to hold if $N$ is not cyclic.

If $\varphi$ is a homomorphism from a finite group $G$ to a finite group $G^{\prime}$, prove that $|\varphi(G)|$ divides the $\operatorname{gcd}$ of $|G|$ and $\left|G^{\prime}\right|$.

