[This question paper contains 4 printed pages]

Your Roll No.

. 2019

Sl. No. of Q. Paper

: 7464

J

Unique Paper Code

: 32351302

Name of the Course

: B.Sc.(Hons.)

Mathematics

Name of the Paper

: Group Theory - I

Semester

: III

Time: 3 Hours

Maximum Marks: 75

Instructions for Candidates:

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt any two parts from each question.
- (c) All questions carry equal marks.
- 1. (a) Let $G = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{R}, a \neq 0 \right\}$. Show that G is

a group under matrix multiplication.

(b) Let G be a group and H be a subset of G. Prove that H is a subgroup of G if a, b∈ H⇒ab⁻¹∈ H. Hence prove that H = {A∈G: det A is a power of 3} is a subgroup of GL (2, R).

- (c) (i) Suppose G is a group that has exactly eight elements of order 3. How many subgroups of order 3 does G have?
 - (ii) If |a| = n and k divides n, prove that $|a^{n/k}| = k$.

 $6 \times 2 = 12$

- 2. (a) Let $G = \langle a \rangle$ be a cyclic group of order n. Prove that $G = \langle a^k \rangle$ if and only if gcd (k, n) =1. List all the generators of Z_{20} .
 - (b) (i) If a cyclic group has an element of infinite order, how many elements of finite order does it have.
 - (ii) List all the elements of order 6 and 8 in Z_{30} .
 - (c) Suppose that a and b are group elements that commute and have orders m and n. If <a> ∩ = {e}, Prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.

 $6.5 \times 2 = 13$

- 3. (a) Let G be a group. Is $H = \{x^2 : x \in G\}$ a subgroup of G? Justify.
 - (b) Prove that any two left cosets of a subgroup H in a group G are either equal or disjoint.
 - (c) Show that (Q, +) has no proper subgroup of finite index. $6 \times 2 = 12$

- **4.** (a) Prove that every subgroup of index 2 is normal. Show that A_5 is normal subgroup of S_5 .
 - (b) Let G be a group and H be a normal subgroup of G. Prove that the set of all left cosets of H in G forms a group under the operation aH.bH = abH where a,b∈G.
 - (c) If H is a normal subgroup of G with |H| = 2, prove that $H \subseteq Z(G)$. Hence or otherwise show that A_5 cannot have a normal subgroup of order 2. $6.5 \times 2 = 13$
- 5. (a) Let C be the set of complex numbers and

$$M = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in R \right\}.$$

Prove that C and M are isomorphic under addition and $C^* = C\setminus\{0\}$ and $M^* = M\setminus\{0\}$ are isomorphic under multiplication.

- (b) Prove that a finite cyclic group of order n is isomorphic to the group $Z_n = \{0, 1, 2, ..., n-1\}$ under addition modulo n.
- (c) (i) Suppose that φ is an isomorphism from a group G onto a group G*. Prove that G is cyclic if and only if G* is cyclic.

P.T.O.

- (ii) Show that Z, the group of integers under addition is not isomorphic to Q, the group of rationals under addition. $6 \times 2 = 12$
- **6.** (a) Let φ be a group homomorphism from a group G to a group G* then prove that:
 - (i) $| \varphi(x) |$ divides |x|, for all x in G.
 - (ii) φ is one-one if and only if $|\varphi(x)| = |x|$, for all x in G.
 - (b) State and prove the Third Isomorphism Theorem.
 - (c) (i) Let G be a group. Prove that the mapping
 φ(g) = g¹, for all g∈G, is an isomorphism on G if and only if G is Abelian.
 - (ii) Determine all homomorphisms from Z_n to itself. $6.5 \times 2 = 13$