RING THEORY AND LINEAR

<u>ALGEBRA</u>

Q:1:-Let(V,+v,.v,0v) be a K-vector space. Then, the following properties are satisfied for all veV and all aeK;

- (a) 0.v u=0.v;
- (b) a.v 0v=0v;
- (c) a.v u=0v;
- (d) (-1).vu=-v

Proof. (a) $0 \cdot_V v = (0+0) \cdot_V v = 0 \cdot_V v + 0 \cdot_V v$, donc $0 \cdot_V v = 0_V$. (b) $a \cdot_V 0_V = a \cdot_V (0_V + 0_V) = a \cdot_V 0_V + a \cdot_V 0_V$, donc $a \cdot_V 0_V = 0_V$. (c) Assume $a \cdot_V v = 0_V$. If a = 0, the assertion $a = 0 \lor v = 0_V$ is true. Assume therefore $a \neq 0$. Then a^{-1} has a meaning. Consequently, $v = 1 \cdot_V v = (a^{-1} \cdot a) \cdot_V v = a^{-1} \cdot_V (a \cdot_V v) = a^{-1} \cdot_V 0_V = 0_V$ by (b). (d) $v +_V (-1) \cdot_V v = 1 \cdot_V v +_V (-1) \cdot_V v = (1 + (-1)) \cdot_V v = 0 \cdot_V v = 0_V$ by (a).

Q:2:-Let V be a K-vector space and E is subset of V a non emptysubspace, we set

$$\langle E \rangle := \{ \sum_{i=1}^m a_i e_i \mid m \in \mathbb{N}, e_1, \dots, e_m \in E, a_1, \dots, a_m \in K \}.$$

This sis a vector subspace of V, said to be generated by E.

Proof. Since $\langle E \rangle$ is non-empty (since E is non-empty), it suffices to check the definition of subspace. Let therefore $w_1, w_2 \in \langle E \rangle$ and $a \in K$. We can write

$$w_1 = \sum_{i=1}^m a_i e_i$$
 et $w_2 = \sum_{i=1}^m b_i e_i$

for $a_i, b_i \in K$ and $e_i \in E$ for all i = 1, ..., m. Thus we have

$$a \cdot w_1 + w_2 = \sum_{i=1}^m (aa_i + b_i)e_i,$$

which is indeed an element of $\langle E \rangle$.

Q:3:-How to compute the intersection of two subspace?

(a) The easiest case is when the two subspaces are given as the solutions of two systems of linear equations, for example:

• V is the subset of
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$$
 such that $\sum_{i=1}^n a_{i,j}x_i = 0$ for $j = 1, \dots, \ell$, et
• W is the subset of $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in K^n$ such that $\sum_{i=1}^n b_{i,k}x_i = 0$ pour $k = 1, \dots, m$

In this case, the subspace $V \cap W$ is given as the set of common solutions for all the equalities.

(b) Suppose now that the subspaces are given as subspaces of Kⁿ generated by finite sets of vectors: Let V = ⟨E⟩ and W = ⟨F⟩ oû

$$E = \left\{ \begin{pmatrix} e_{1,1} \\ e_{2,1} \\ \vdots \\ e_{n,1} \end{pmatrix}, \dots, \begin{pmatrix} e_{1,m} \\ e_{2,m} \\ \vdots \\ e_{n,m} \end{pmatrix} \right\} \subseteq K^n \text{ and } F = \left\{ \begin{pmatrix} f_{1,1} \\ f_{2,1} \\ \vdots \\ f_{n,1} \end{pmatrix}, \dots, \begin{pmatrix} f_{1,p} \\ f_{2,p} \\ \vdots \\ f_{n,p} \end{pmatrix} \right\} \subseteq K^n.$$

Then

$$V \cap W = \left\{ \sum_{i=1}^{m} a_{i} \begin{pmatrix} e_{1,i} \\ e_{2,i} \\ \vdots \\ e_{n,i} \end{pmatrix} \right|$$

$$\exists b_{1}, \dots, b_{p} \in K : a_{1} \begin{pmatrix} e_{1,1} \\ e_{2,1} \\ \vdots \\ e_{n,1} \end{pmatrix} + \dots + a_{m} \begin{pmatrix} e_{1,m} \\ e_{2,m} \\ \vdots \\ e_{n,m} \end{pmatrix} - b_{1} \begin{pmatrix} f_{1,1} \\ f_{2,1} \\ \vdots \\ f_{n,1} \end{pmatrix} - \dots - b_{p} \begin{pmatrix} f_{1,p} \\ f_{2,p} \\ \vdots \\ f_{n,p} \end{pmatrix} = 0 \right\}.$$

Here is a concrete example: $E = \left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\} \subseteq K^n \text{ and } F = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\0\\1 \end{pmatrix} \right\} \subseteq K^n.$ We have to solve the system $\begin{pmatrix} 1 & 0 & -1 & -2\\1 & 1 & 0 & 0\\2 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1\\y_2\\y_1\\y_2 \end{pmatrix} = 0.$

With operations on the rows, we obtain

$$\ker(\begin{pmatrix}1 & 0 & -1 & -2\\ 1 & 1 & 0 & 0\\ 2 & 0 & -1 & -1\end{pmatrix}) = \ker(\begin{pmatrix}1 & 0 & -1 & -2\\ 0 & 1 & 1 & 2\\ 0 & 0 & 1 & 3\end{pmatrix}) = \ker(\begin{pmatrix}1 & 0 & 0 & 1\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 3\end{pmatrix}),$$

thus we obtain as solution subspace the line generated by $\begin{pmatrix} -1\\ 1\\ -3\\ 1 \end{pmatrix}$, so the intersection is given by the line

$$\left(-1\cdot \begin{pmatrix}1\\1\\2\end{pmatrix}+1\cdot \begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \left\langle-3\cdot \begin{pmatrix}1\\0\\1\end{pmatrix}+1\cdot \begin{pmatrix}2\\0\\1\end{pmatrix}\right\rangle = \left\langle\begin{pmatrix}1\\0\\2\end{pmatrix}\right\rangle.$$

Here is the alternative characterization of the subspace generated by a set

Q:4:-Let V be a K-vector space and E is subspace of V a non- empty subset. Then we have the equality

$$\langle E\rangle = \bigcap_{W \leq V \text{ subspace s.t. } E \subseteq W} W$$

Where the right hand side is the intersection of all subspaces W of V containing E.

Proof. To prove the equality of two sets, we have to prove the two inclusions.

' \subseteq ': Any subspace W containing E, also contains all the linear combinations of elements of E, hence W contains $\langle E \rangle$. Consequently, $\langle E \rangle$ in the intersection on the right.

 $' \supseteq$ ': Since $\langle E \rangle$ belongs to the subspaces in the intersection on the right, it is clear that this intersection is contained in $\langle E \rangle$.

Q:5:- Let V be a K-vector space, Wi≤V subspace of V for i∈I≠¢ and W=∑i∈IWi.Then the following assertions are equivalent

(i) $W = \bigoplus_{i \in I} W_i$;

(ii) for all $w \in W$ and all $i \in I$ there exists a unique $w_i \in W_i$ such that $w = \sum_{i \in I}' w_i$.

Proof. "(i) \Rightarrow (ii)": The existence of such $w_i \in W_i$ is clear. Let us thus show the uniqueness

$$w = \sum_{i \in I}' w_i = \sum_{i \in I}' w'_i$$

with $w_i, w'_i \in W_i$ for all $i \in I$ (remember that the notation \sum' indicates that only finitely many w_i , w'_i are non-zero). This implies for $i \in I$:

$$w_i - w'_i = \sum_{j \in I \setminus \{i\}} (w'_j - w_j) \in W_i \cap \sum_{j \in I \setminus \{i\}} W_j = 0.$$

Thus, $w_i - w'_i = 0$, so $w_i = w'_i$ for all $i \in I$, showing uniqueness. "(ii) \Rightarrow (i)": Let $i \in I$ and $w_i \in W_i \cap \sum_{j \in I \setminus \{i\}} W_j$. Then, $w_i = \sum_{j \in I \setminus \{i\}} w_j$ with $w_j \in W_j$ for all $j \in I$. We can now write 0 in two ways

$$0 = \sum_{i \in I}' 0 = -w_i + \sum_{j \in I \setminus \{i\}}' w_j.$$

Hence, the uniqueness imples $-w_i = 0$. Therefore, we have shown $W_i \cap \sum_{j \in I \setminus \{i\}} W_j = 0$. \Box

Q:6:-How to compute a basis for a vector space generated by a finite set of vectors? Solve a system of linear equations.

- Add c1 to the basis
- If e₂ is linearly independent from e₁ (i.e. e₂ is not a scalar multiple of e₁), add e₂ to the basis and in this case e₁, e₂ are linearly independent (otherwise; do nothing).
- If e₃ is linearly independent from the vectors chosen for the basis, add e₃ to the basis and in this case the elements chosen for the basis are linearly independent (otherwise, do nothing).
- If e₄ is linearly independent from the vectors already chosen for the basis, add v₄ to the basis and in this case all the chosen elements for the basis are linearly independent (otherwise, do nothing).
- etc. until the last vector.

Here is a concrete example in R4;

$$s_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, s_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, s_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, s_4 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

- Add e₁ to the basis.
- Add e₃ to the basis since e₂ is clearly not a multiple of e₁ (see, for example, the second coefficient), thus e₃ at e₂ are linearly independent.
- Are n₁, n₂, n₃ linearly independent?We consider the system of linear equations given by the matrix

 $\begin{pmatrix} 1&b \\ 3&b \\ 3&b \\ 3&b \\ 3&b \\ \end{pmatrix}$

By transformations on the mus, we obtain the matrix

$$\begin{pmatrix} 1 & 0 & 1 \\ 9 & \delta & \delta \\ 0 & 0 & 0 \end{pmatrix}$$
.

We obtain the solution $\begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$. So, we do not odd e_3 to the basis since e_3 is linearly dependent from e_1, e_2 .

 Ant n₁, n₂, n₄ linearly independent? We consider the system of linear equations given by the matrix

```
\begin{pmatrix} 1&b&q\\ g&b&q \end{pmatrix}
```

By manuformations on the muss, we obtain the matrix

$$\left(\begin{smallmatrix}1&0&0\\3&1&0\\0&0&0\end{smallmatrix}\right)$$

The corresponding system has no son-zero solution. Therfore v_1, v_2, v_4 are linearly independent. This is the basis that we looked for

Q:7:-let neN

$$Let M = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} be a matrix with n columns, m rows and with coefficients$$

in K (we denote the set of these matrices by $Mat_{m \times n}(K)$; this is also a K-vector space). It defines the K-linear map

$$\varphi_M : K^n \rightarrow K^m, v \mapsto Mv$$

6

1 RECALLS: VECTOR SPACES, BASES, DIMENSION, HOMOMORPHISMS

where Mv is the usual product for matrices. Explicitely,

$$\varphi_M(v) = Mv = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_{1,i}v_i \\ \sum_{i=1}^n a_{2,i}v_i \\ \vdots \\ \sum_{i=1}^n a_{m,i}v_i \end{pmatrix}$$

The K-linearity reads as

$$\forall a \in K \forall v, w \in V : M \circ (a \cdot v + w) = a \cdot (M \circ v) + M \circ w.$$

Q:8:-Write augmented matrix. M=

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 4 & 5 & 6 \\ 0 & 0 & 1 & 7 & 8 & 9 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 \\ -4 & 1 & 0 & 0 & -3 & -6 \\ -7 & 0 & 1 & 0 & -6 & -12 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 \\ -4 & 1 & 0 & 0 & -3 & -6 \\ 1 & -2 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \mapsto \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 3 \\ 4/3 & -1/3 & 0 & 0 & 1 & 2 \\ 1 & -2 & 1 & 0 & 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} -5/3 & 2/3 & 0 & 1 & 0 & -1 \\ 4/3 & -1/3 & 0 & 0 & 1 & 2 \\ 1 & -2 & 1 & 0 & 0 & 0 \end{pmatrix}$$

The left half of the final matrix is the matrix C looked for: $C = \begin{pmatrix} -5/3 & 2/3 & 0 \\ 4/3 & -1/3 & 0 \\ 1 & -2 & 1 \end{pmatrix}$. The right half

is the matrix obtained by the operations on the rows.

We know that we have the following equality (to convince ourselves, we can verify it by a small computation):

$$CM = \begin{pmatrix} -5/3 & 2/3 & 0\\ 4/3 & -1/3 & 0\\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 0 & 1 & 2\\ 0 & 0 & 0 \end{pmatrix}.$$

As application of the Gauß's algorithm written in terms of matrices, we obtain that any invertible square matrix M can be written as product of the matrices of Definition 1.39. Indeed, that we can transform M into identity by operations on the rows.

Q:9:-Find the eigenvalues

M=((2,1,1,),(3,2,3),(-3,-2,-1))

For the eigenvalue 1, we compute the kernel

$$\ker \left(\begin{pmatrix} 2 & 1 & 1 \\ -3 & -1 & -2 \end{pmatrix} - 1 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) = \ker \left(\begin{pmatrix} 1 & 1 & 1 & 1 \\ -3 & -1 & -3 \end{pmatrix} \right)$$
$$= \ker \left(\begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = \ker \left(\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right) = \langle \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \rangle$$

For the eigenvalue -1, we compute the kernel

$$\ker \left(\begin{pmatrix} 2 & 1 & 1 \\ 3 & -3 & -1 & -2 \end{pmatrix} + 1 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) = \ker \left(\begin{pmatrix} 3 & 1 & 1 \\ -3 & -1 & -1 \end{pmatrix} \right)$$
$$= \ker \left(\begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \right) = \ker \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \right) = \langle \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \rangle$$

For the eigenvalue 2, we compute the kernel

$$\ker\left(\begin{pmatrix}2 & 1 & 1\\ 3 & 2 & 3\\ -3 & -1 & -2\end{pmatrix} - 2 \cdot \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{pmatrix}\right) = \ker\left(\begin{pmatrix}0 & 1 & 1\\ 3 & 0 & 3\\ -3 & -1 & -4\end{pmatrix}\right) = \ker\left(\begin{pmatrix}1 & 0 & 1\\ 0 & 1 & 1\\ 0 & 0 & 0\end{pmatrix}\right) = \langle\begin{pmatrix}1\\ 1\\ -1\end{pmatrix}\rangle$$

Q:10:-Let $\phi \in EndK(V)$. The following statements are equivalent:

(i) ϕ is diagonalizable.

(ii) $V = L \lambda \in \text{Spec}(\phi) E\phi(\lambda)$.

Proof. "(i) \Rightarrow (ii)": We have the inclusion $\sum_{\lambda \in \operatorname{Spec}(\varphi)} E_{\varphi}(\lambda) \subseteq V$. By Lemma 3.10, the sum is direct, therefore we have the inclusion $\bigoplus_{\lambda \in \operatorname{Spec}(\varphi)} E_{\varphi}(\lambda) \subseteq V$. Since φ is diagonalizable, there exists a K-basis of V consisting of eigenvectors for φ . Thus, any element of this basis already belongs to $\bigoplus_{\lambda \in \operatorname{Spec}(\varphi)} E_{\varphi}(\lambda)$, whence the equality $\bigoplus_{\lambda \in \operatorname{Spec}(\varphi)} E_{\varphi}(\lambda) = V$.

"(ii) \Rightarrow (i)": For all $\lambda \in \text{Spec}(\varphi)$ let S_{λ} be a K-basis of the eigenspace $E_{\varphi}(\lambda)$. Thus $S = \bigcup_{\lambda \in \text{Spec}(\varphi)} S_{\lambda}$ is a K-basis of V consisting of eigenvectors, showing that φ is diagonalizable.