BIOMATHEMATICS

Q:1:- Describe the model Exponential Growth

From our approximation
KN(t)h = N(t+h) — N(t)
we have that

1
KN(t) = T(;\’[f +h) — N(t))
]
Taking the limit as i — (), and remembering the definition of derivative. we conclude that the right-

[N
hand side converges to "ﬂ"” I. We conclude that V satisfies the following differential equation:
§
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We may solve this equation by the method of separation of variables, as follows:
dN aN
T Kdt = i /I{da‘ = InN = Kit+c.

Evaluating at { = (), we have In Ny = ¢, so that In{N({) /Vy) = I{{. Taking exponentials, we have:

N(t) = Nyeltt (exponential growth: Malthus, 1798)

Bacterial populations tend to growth exponentially, so long as enough nutrients are available.

Q:2:- Describe the model Logistic Equation

d N A N N8 -N)
We solve = % (l _L-f.) = —

T using agin the method of separation of variables:
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We compute the mtegral using a partial fractions expansion:
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W can see that there is a & asymptole as § — ~0. Let’s praph with Maple:

with{plots}):
Elo)s=t—=>{0.2)1/ (0. 2+0. . Beaxpi{-1)):
pli=plat{E£{t),0..8,0..1.3,tickmarks=[0,2],thickness=3,color=black}):

et ow] =
g-=L=>1l

p2:=plotiglit),0, .8, tickmarka=[0,2],;thickness=2,1inestyle=2,color=black}:

display(pl,p2);




Q:3:-Describe the model Chemostat

total biomass: NV and  total notdent in caliure chamber: C{t) 1V

Bromasy change in interval Af due to growth:
N+ A0V = NV = [N+ 40 =NV = K{C))N{E AV

so contribution to df NV Adl s Y4 KNV

bacterial mass in effluent;

in a small interval Al the volume out is: F - Adf [1;3.< =)m®

40, since the concentration is N (t) g/m”, the mass out is: N{f) . F. At g

and 50 the contribution to d{ VV) /dt is “— N[0 F

SJor d{CV) dt equution:

we have three terms: —ad(C)NV (depletion), —C'(1)F (outflow), and 47 F (inflow), ~s

d{ NV
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i*TJ. = —ai{CINV = CF + CyF .
¢

Finally, divide by the constant 1" 1o get this system of equations on N, ("

ﬁ = K{(C)N _-'\'_F-'l.-"ll'

dt '
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Q:4:- Describe the model Linearization



We wish to analyze the behavior of solutions of the ODE system X /di = F{X) near a given steady
state X For this purpose, it is convenient 1o introduce the displacement (translation) relative 1o X:

and to write an equation for the variables X . We have:

IX  dX dX  dX dXx G 2 e 5 ;
= T == = FX4+X) = FR)+F(X)X +0(X) = AX
di di it at dt N ot St
] =0
where A = F'(X) is the Jucobian of F evaluated at X. )
We dropped higher-order-than-linear terms in X because we are only interested in X =0
{small displacements X = ¥ from X are the same as small X 's).
Recall that the Jacobian, or “derivative of a vector function,” is defined as the n x n matrix whose
(i, fithentry is ¢ f, fche . if f; is the ith coordinate of I and i is the jth coordinate of z.
One often drops the “hats™ and writes the above linearization simply as dX/dl = AX,
but it 18 extremely imponant to remember that what this equation represents:
it is an equation for the displacement from a particular equilibrinm X
More precisely, it is an equation for smali displacements from X
{And, for any other equilibrium X, a different mawix A will, generally speaking, result),

For example, let us take the chemosiat afier a reduction of the number of parameters:

o R O n.lr_—"h.-"-" N
rﬂ((‘) = f‘f.‘if:l — (--#::.."-'{.‘|H:2

so that, at any point [N, (7] the Jacobian A = F' of Fis:

(5 )

: N
e T+
In particular, at the point ¥, where © = 1o & = 200222970 e have:
0 Fleg = 1)
1 ) g — 1) +
= iy

where we used the shorthand: § = ag{og = 1) = L. (Prove this as an exercise!)

Q:5:-Describe Interpreting.



Let us give an intuitive interpretation of o

Wee make the following “thought experfment™:
suppose that we isolate a group of " infected individuals, and allow them to recover,

Since there are no susceptibles in our imagined expedament. S(1) = 0. so0 % = =, s0.{t) = Pe=,

Suppose that the éth individual is infected for a wtal of d, days. and look at the following table:
cal. days—

0 1 2 cem | et ] oa
Ind. 1 XX XXX X =y days
Ind. 2 X1 %[ X |:X =y days
Ind. 3 X X X1X]|X =y days
lnd. P X x| X |3 = dp duys
=l |=f | =f
Misclenrthat oy + o 4 ... =dy+ £+ Lot ...

(supposing that we count on integer days, or hours, or some other discrete time unit).
Therefore. the average number of days that individuals are infected is:

| 1 | B 1 e 1
—= i, = — L = —f Idt = —/ Rl =
I’ 'P I: i -P (1] o

On the other hand, back 1o the original model, what is the meaning of the term “J517 in o f [ dt?
It means that f{A) = F(0) = S5{000(0) AL

Therefore, if we start with {0} infectives, and we look at an interval of time of length At = 1/w,
which we agreed represents the average time of an infection, we end up with the following number of
new infectives:

SN = fonrofe = ANID) v
if I{0)) < N, which means that each individual, on the average, infected [ 3N (0] /£(0) = o new
individuals.
We conclude, from this admitedly hand-waving argument®, that o represents the expected member
infected by a single individual (in epidemiclogy. the imtrinsic reproductive rate of the disease).

Q:6:-Describe Nuclicline Analysis.

For the previous example, ¥ =2, d = L=l andy = 1:

15

e SO - ¥ B R
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ot

with equilibria at (2.0} and (1. 1/2), the [-nullcline is the union of /=0 and 5=1.
When [ =0.d5/dt =2~ 8§, :

andon § = 1,dS/dt = 1 =21,
50 we can find if amows are right or left pointing. rd
On the S-nullcline [ = 521 we have =
di (S—1)2-8) ' N\
dt 541 \
and therefore arrows point down if § < 1, and up \-l\
if 5 € (1.2). This in e allows us to know the 55 BT

general orientation (NE, etc) of the vector field. d
Here are computer-generated phase-planes™ for this example as well as for a modification in which
wetook v =3 (soo < 1),
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In the first case, the system settles to the positive steady state, no matter where started,
as Jong as 7{0) > (L

In the second case. there is only one equilibrium. since the vertical component of the [-nullcline is at
5 = 3/1 = 3. which does not intersect the other nullcling. The disease will disappear in this case.

Q:7:-Describe a variation:STD’s.



Suppose hat we wish o study a virus thal can oaly be passed on by heterosexusl sex. Then we shoald
consider bwn separate populstions, male and female. We use 5 to indicale the susceptible males aned
A for the femmades, and similardy for f and f.

The eqjustsoes analogous o the STRS mode] are-
- —{51 +5f
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This madel 15 a Litle difficult to stody, bat inomany STD's {especially asympiomatic), there is no
“remaoved” class. bt instead the mfecteds get hack into the susceptible population. This gives:
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= —A&1 + @

= —d%f + 2l
= d5F—ul.

Writing N = .'Er'{f] + j'-!t_] ol N = S(1] + L) for the ol numbers of males ond females, and using
these bwo comaervation laws, we can just stady (he following set of s ODE's:

2 o E@-RIce
T = Ny = =
dl . =

"d.l_ = MN =0T =l

Homework: Prove that there are two equilibna, [ = I = 0 and, prowided that
Nl ) AR § o HE-u u-'H-h

+=(=)(F)
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Q:8:-
As an ilusirative example. let us consider the fellowing set of chemical reactions:

iy Iy
Erp ol E+Q F+O—_DEp.p
] = |

(1

which may be thought of as 0 model of the actrvatson of a protein subsirate [* by an encyme £ £ %
an imtermediate complex, which dissocinies either back into the original components or mio o prodoct
{activated prodein ) {F and the encyme. The sacond reaction mmasfornmss OF back into 7, and is catabyzed
hy another encyme {2 phosphatase denoted by . A sysiem of reactions of this type is sometimes
called a “futile cyvcle™, and neactons of this type are uhiguitpas o cell hiology. The mass-acisn
kinetics model is then ohtuned ax follows. Denoting comeenimations with the same letiers (7, eic) ax
the spacies themsel ves. we huve the folkewing vector of species. ®oichiometry matrix 1" and vector o’

reaction res M) 5)-
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From bere. we can wrile the equations (9). For example.

df*

—

Q:9:-Describe Allosteric Inhibition.

{ =1k EFY 4 (L O 4 (1] (kI

bV — b B+ ke



In wllosteric imkibition™, an mhibitor does not bind in the same ploce where the catalytic activity
nocurs, but instead binds gt a different effectar site (other names are regalaiory or alfoneric slel,
with il result that the shape of the enzyme i@ madificd. In the new shape, it iz hander for the enzyme
o bind to the substrale.

albmncre ichibms

A shightiy ddfereat sstustson is if bimdng of subsirute com always ocour, but product can oaly be
Tormed {and released ] if § B not bound. We maoded thes Bast siuabion, which is a e simpler.

Also, for simphcety, we will assume thal bendiag of 5 or [ 1o E ane independent of cach other.

(I we don't assame this, the equations are stll the same, bal we need b introduce sme more ket
canstams L5}

A reasomshle chemical mode] i, then:
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‘where “ET™ denotes the complex of emeyme and mhibitor, elc.
Inis possible to prove (see e.g. Keener-Snevid’s Mash Physiolepy, exercise 1.5) that there results onder
gusi -stealy stale approximation o mie
dp V. S ranth
et 1+i/Kp f+ex+d
for some surinble numbers o = aii], .- . and o susisbly defimed 5.
Midice thsd the maximal posiible mie., for large =, & lvoer than in tbe case of competitive inhshition.
One intuition is k21, oo matter what is the amoumst of substrate. the inhibitor cun stll bind. so maximal
throughput b affected.

Q:10:-Describe Periodic Behaviour



Penodic behanaars {ie, vecillalions ) are very impartamt in bslogy, appearing in diverse aness such as
neursl signafing. circadian rythms, ard beart beats.
You bave seen examples of perindic bebavior m the differeniml equations course, most probably
the harmonic oscillator {mass spring system with oo damping)
Ii-r —
= "
ey
df
whose tmjeciones are circles. or. mone genemlly, linesur systerns with eigemvalues that ane purely
imaginary. leading o ellipsoidal tmjectonies:

= —I

A serious imitation of such linear oscilladors is that they are nal rodrnr:
Sarpposc that there is a small perturbation in the cpstions:
dr
P
dy
I
where = # 0 iz small. The trajectones are nid pericedic anymon:|
Mo iy (df doesn’t balance dr /o just right, s the imjedory doesn’t “close™ on isell:

= —IT'ey

Depending on the sign of =, we pet a smble or an unstable spiral.

When dealing with electrical or mechanical systems, it is often possbie to constroct things with
precise components and low emmor ielermnce.  In biology, in contrase, things ore oo “mescy™ 2nd
mscillators, if they are to be relinble, must be more “rmobust™ than simple bermaome oscillaions.

Anather disadvamtage of simple linear osciflations is that if, for some reason, the state “jumps™ 0
amother posttion™ then the system will semply start cscillating alemg o different oohit and never coms

ik 1o the origins] tmjeckany:
©

To put it in different erms, the paisoular osciflation depends om the initial conditions. Baological
obvjects, n contned, lend o resel themselves (eop, vour intemal clock adjushing after jeilag ).



