Name of Course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32351602
Name of Paper	: C14-Ring Theory and Linear Algebra-II
Semester	: VI
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

- 1. Prove that $\mathbb{Z}[x]$ is not a principal ideal domain. Also show that $2x^2 + x + 1$ is irreducible over \mathbb{Z}_3 . Construct a field of order 16.
- Prove that in a unique factorization domain, an element is irreducible if and only if it is prime.
 Prove or disprove that a subdomain of a principal ideal domain is a principal ideal domain.
 Show that x⁴ + 1 is irreducible over Q but reducible over R.
- 3. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear operator such that

$$T(f(x)) = f'(x) + f''(x).$$

Find the eigenvalues of *T* and their corresponding eigenspaces. Is *T* a diagonalizable linear operator? Find the minimal polynomial of *T*. Now suppose that $V = \mathbb{R}^3$ and $\beta = \{(1,0,2), (0,1,1), (1,1,0)\}$ be an ordered basis for *V*. Find an ordered basis β^* of V^* which is the dual basis corresponding to β .

4. Find an ordered basis for the *T*-cyclic subspace *W* of \mathbb{R}^4 generated by the vector *z* where $T: \mathbb{R}^4 \to \mathbb{R}^4$ is a linear operator such that

$$T(a, b, c, d) = (c + d, -b, a + b, 2a + b)$$

and $z = e_1$. Is *W* a *T*-invariant subspace of \mathbb{R}^4 ? Find the characteristic polynomial of T_W . Show that the characteristic polynomial of T_W obtained above divides the characteristic polynomial of *T*. Verify Cayley-Hamilton Theorem for T_W .

5. Apply the Gram-Schmidt process to the subset

$$S = \{f_1, f_2, f_3\}$$

of the inner product space $V = C[-\pi, \pi]$ with the inner product given by

$$\langle f,g\rangle = \int_{-\pi}^{\pi} f(t)g(t)\,dt$$

to obtain an orthogonal basis forspan(S), i.e., the subspace of V spanned by the functions in S, where $f_1(x) = 1$, $f_2(x) = \sin x$ and $f_3(x) = \cos x$. Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S).

6. Use the least squares approximation to find the best fit quadratic function for the set

$$\{(-1,5), (1,1), (2,1), (3,-3)\}.$$

Also compute the corresponding error E. Also find the minimal solution to the following system of linear equations:

$$x + y + z - w = 1$$
$$2x - y + w = 1$$