Name of Course	$:$ CBCS B.Sc. (\mathbf{H}) Mathematics
Unique Paper Code	$: \mathbf{3 2 3 5 1 6 0 2}$
Name of Paper	$:$ C14-Ring Theory and Linear Algebra-II
Semester	$:$ VI
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Prove that $\mathbb{Z}[x]$ is not a principal ideal domain. Also show that $2 x^{2}+x+1$ is irreducible over \mathbb{Z}_{3}. Construct a field of order 16 .
2. Prove that in a unique factorization domain, an element is irreducible if and only if it is prime. Prove or disprove that a subdomain of a principal ideal domain is a principal ideal domain. Show that $x^{4}+1$ is irreducible over \mathbb{Q} but reducible over \mathbb{R}.
3. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a linear operator such that

$$
T(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)
$$

Find the eigenvalues of T and their corresponding eigenspaces. Is T a diagonalizable linear operator? Find the minimal polynomial of T. Now suppose that $V=\mathbb{R}^{3}$ and $\beta=\{(1,0,2),(0,1,1),(1,1,0)\}$ be an ordered basis for V.Find an ordered basis β^{*} of V^{*} which is the dual basis corresponding to β.
4. Find an ordered basis for the T-cyclic subspace W of \mathbb{R}^{4} generated by the vector z where $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear operator such that

$$
T(a, b, c, d)=(c+d,-b, a+b, 2 a+b)
$$

and $z=e_{1}$.Is W a T-invariant subspace of \mathbb{R}^{4} ?Find the characteristic polynomial of T_{W}.Show that the characteristic polynomial of T_{W} obtained above divides the characteristic polynomial of T.Verify Cayley-Hamilton Theorem for T_{W}.
5. Apply the Gram-Schmidt process to the subset

$$
S=\left\{f_{1}, f_{2}, f_{3}\right\}
$$

of the inner product space $V=C[-\pi, \pi]$ with the inner product given by

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t
$$

to obtain an orthogonal basis forspan (S), i.e., the subspace of V spanned by the functions in S, where $f_{1}(x)=1, f_{2}(x)=\sin x$ and $f_{3}(x)=\cos x$. Then normalize the vectors in this basis to obtain an orthonormal basis β for $\operatorname{span}(S)$.
6. Use the least squares approximation to find the best fit quadratic function for the set

$$
\{(-1,5),(1,1),(2,1),(3,-3)\} .
$$

Also compute the corresponding error E. Also find the minimal solution to the following system of linear equations:

$$
\begin{gathered}
x+y+z-w=1 \\
2 x-y+w=1
\end{gathered}
$$

