Name of Course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32357611
Name of Paper	: DSE-4 Linear Programming and Theory of Games
Semester	: VI
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

Q.1 Solve the following LPP by Big-M method and verify your answer by finding all the existing basic feasible solutions:

Maximize $Z = x_1 - x_2 - x_3$ Subject to $x_1 + x_2 + x_3 \ge 2$ $2x_1 - x_2 + x_3 = 3$ $x_1, x_2, x_3 \ge 0$

Q.2 Obtain the inverse of the following matrix by using simplex method

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{array} \right]$$

Verify your answer by matrix multiplication.

- Q.3 Verify for the following Linear Programming Problem that dual of dual is primal. Also using complementary slackness theorem solve both primal and dual problems.
 - Maximize $Z = x_1 + x_2$

Subject to

$$x_1 + 2x_2 \le 5$$
$$2x_1 + x_2 \ge 0$$
$$x_2 \le 3$$
$$x_1, x_2 \ge 0.$$

Q.4 For the following cost minimization transportation problem find initial basic feasible solutions by using North West Corner rule, Least cost method and Vogel's approximation method. Compare the three solutions:

Destination Source	A	В	C	D	E	Supply
Ι	16	16	13	22	17	50
Π	14	14	13	19	15	60
III	19	19	20	23	15	50
IV	12	10	15	8	12	50
Demand	30	20	70	30	60	

Also find the optimal basic feasible solution of above problem using UV- method.

Q.5 Solve the cost minimization assignment problem:

Man Job	Ι	II	III	IV	V
А	2	3	5	5	6
В	4	5	7	7	8
С	7	8	8	10	9
D	3	5	3	6	5
Е	4	3	5	2	1

Does this problem has more than one solution? If yes, then find any FOUR possible solutions.

Q. 6 Show that the following rectangular game does not have any saddle point.

-	2	3	4	5 -	1
	12	-6	3	0	l
	4	0	2	1	
	0	4	3	4	
-	6	-1	3	-2 -	I

Solve it by graphical method by reducing its size using dominance principle.