Name of Course	$:$ CBCS B.Sc. (H) Mathematics
Unique Paper Code	$: \mathbf{3 2 3 5 1 6 0 1}$
Name of Paper	$:$ C 13- Complex Analysis
Semester	$:$ VI
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Determine whether $S=\left\{z \in \mathbb{C}:|z|^{2}>z+\bar{z}\right\}$ is a domain or not? Justify your answer.

Find the image of line segment joining $z_{1}=-i$ to $z_{2}=-1$ under the map $f(z)=\overline{i z}$.
Check whether Cauchy-Riemann equations for $f(z)=\sqrt{\left|z^{2}-\bar{z}^{2}\right|}$ are satisfied at the origin? Is f analytic at the origin? Justify your answer.

Suppose $f(z)=\cosh (2 x) \cos (2 y)+i v(x, y)$ is analytic everywhere such that $v(0,0)=0$. Find $f(z)$. Hence find zeros of f.

Solve the equation $e^{z-1}+i e^{3}=0$.
2. Let $S=\{z \in \mathbb{C}: \operatorname{Im} z=1$ and $\operatorname{Re} z \neq 4\}$. Is S open? Is S closed? Justify your answer.

Assume that g is analytic in a region and that at every point either $g=0$ or $g^{\prime}=0$. Show that g is constant.
Suppose $f(z)=\left\{\begin{array}{cc}\bar{z}^{3} / z^{2} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{array}\right.$. Show that f is continuous everywhere on \mathbb{C}. Is f analytic at $z=0$? Justify your answer.

Does there exists an analytic function $f(z)=u(x, y)+i v(x, y)$ for which $u(x, y)=y^{3}+5 x$? Solve the equation $\log (z)+\log (2 z)=3 \pi / 2$.
3. Determine whether the following curves are simple, closed, smooth or contour

$$
\begin{aligned}
& C_{1}: z(t)=|t|+i t, \quad t \in[-1,1] \\
& C_{2}: z(t)=e^{2 i t}, \quad t \in[0,2 \pi], \\
& C_{3}: z(t) \text { is the positively oriented boundary of the rectangle whose sides lie along } \\
& \quad x= \pm 1, y=0, y=1 .
\end{aligned}
$$

Evaluate $\int_{C_{3}}|z| d z$. Explain why Cauchy Goursat theorem is not applicable in this case? Use ML-Inequality to show that

$$
\left|\int_{C} \frac{e^{z}}{(z+1)} d z\right| \leq 4 \pi e^{2}
$$

where $C: z(t)=e^{2 i t}, t \in[-\pi, \pi]$.
4. Evaluate $\int_{C} z e^{3 z} d z$ where C is the parabola $x^{2}=y$ from $(0,0)$ to $(1,1)$.

Using Cauchy Integral formula, determine the integral $\int_{C} \frac{e^{z}}{z^{2}\left(z^{2}-9\right)} d z$ where C is positively oriented circle (i) $C:|z|=1$. (ii) $C:|z-3|=1$.
Use Liouville's theorem to establish that $\cos z$ is not bounded in the complex plane.

Let g be an entire function and suppose that $|g(z)|<10$ for all values of z on the circle $|z-2|=3$. Find a bound for $\left|g^{\prime \prime \prime}(2)\right|$.
5. Determine the radius of convergence of the series $\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$ and $\sum_{k=0}^{\infty} k^{k} z^{k}$. Also discuss the convergence of the series.
Obtain the Maclaurin series of the function $(z)=\frac{1}{z^{2}} \sinh \left(\frac{1}{z}\right)$. Specify the region in which the series is valid.
Find the Laurent series of the function $f(\mathrm{z})=\frac{1}{(z+1)(z+3)}$ valid for $0<|z+1|<2$.
6. Determine the residue and singularities of the function $g(\mathrm{z})=\frac{z+1}{z^{2}+4}$. Also evaluate $\int_{C} g(z) d z$ where C is the positively oriented circle $|z-i|=2$.
Using a single residue, evaluate the integral $\int_{C^{\prime}} \frac{3 z-1}{z(z+1)} d z$ where C^{\prime} is the positively oriented circle $|z-1|=4$.
Use residue to evaluate the integral $\int_{0}^{2 \pi} \frac{d t}{3+c o s t}$

