This question paper contains $4+1$ printed pages]

Roll No. \square
S. No. of Question Paper : 8086

Unique Paper Code : 32357506

Name of the Paper : Cryptography and Network Security
Name of the Course : B.Sc. (Hons) Mathematics : DSE-1

Semester : V

Duration: 3 Hours
Maximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)
All questions are compulsory.
Attempt any five parts from question No. 1, each part carries 3 marks.
Attempt any two parts from questions 2 to 6, each part carries 6 marks.

1. (a) Use the Rail fence cipher of depth 3 to encrypt "there could be better questions." Which attack is this cipher vulnerable to ?
(b) Explain the term diffusion in the context of a block cipher. How does DES achieve diffusion?
(c) What is the difference between a stream cipher and a block cipher ?
(d) Describe a trap-door-one-way function.
(e) Define Euler totient function ϕ. Compute ϕ (105).
(f) Write the order in which Compression, Encryption and Digital Signatures are applied in PGP, while achieving both Authentication and Confidentiality, clearly state the reason behind this order.
(g) Describe the terms Non-Repudiation and Integrity in context of Cryptography. Mention the cryptographic primitives used to achieve these.
2. (a) Decrypt the following message encrypted using playfair cipher with the key "HER MAJESTY'S SHIP".

LVHZ CRJE RQQO ZRTY ERGM JRRM XOJR RANF' RMOW ODNM AHYN WDER NMFM.
(b) What does it mean to say that the one time pad is unbreakable ? If the one time pad is unconditionally secure, why is it not widely used ?
(c) Describe the key expansion algorithm of DES with the help of a diagram.
3. (a) For any positive integers a and n, show that $b \equiv c$ $\bmod (n)$ implies $a b \equiv a c \bmod (n)$. Show that converse is not true in general. In which case converse is also true?
(b) Determine the GCD of $x^{4}+2 x^{3}+5 x^{2}+5 x+4$ and $x^{3}+2 x^{2}+3 x+6$ over GF(7).
(c) State Fermat's Theorem. Use Fermat's Theorem to reduce $8^{109}(\bmod 37)$.
4. (a) Describe the general structure of the encryption process in AES with the help of a diagram. Briefly comment on the various transformations performed in each round.
(b) Suppose that we have the following 128 -bit AES key, given in haxadecimal notation :

287E151628AED2A6ABF7158809CF4F3C

(i) Express the initial round key ($w_{0}, w_{1} w_{2} w_{3}$) as a State matrix.
(ii) Given that RC[I] $=01, \mathrm{~S}(09)=01, \mathrm{~S}(\mathrm{CF})=8 \mathrm{~A}, \mathrm{~S}(4 \mathrm{~F})$ $=84$ and $S(3 C)=E B$, where S denotes the S-box, calculate the first four bytes (w_{4}) for round one.
) Define the discrete logarithm of a number b for the base $a(\bmod p)$. Prove that : $\operatorname{dlog}_{a, p}(x y)=\left[\right.$ dlog $_{a, p}$ $\left.(x)+\operatorname{dlog}_{a p}(y)\right](\bmod \phi(p))$.
5. (a) Perform encryption and decryption using the RSA algorithm for $p=7, q=13, e=5$ and $M=8$.
(b) The public parameters of Alice consists of an elliptic curve $y^{2}=x^{3}+x+6$ over the field $\mathrm{GF}(11)$ and a point $G=(2,7)$ on this curve. Suppose Alice's private key is $a=2$. Bob sends the ciphertext $((8,3),(5,9))$ to Alice. Find the message sent by Bob to Alice.
(c) For the elliptic curve $y^{2}=x^{3}+x+6$ over the field GF(11) :
(i) Calculate $\mathrm{P}+\mathrm{Q}$, where $\mathrm{P}=(5,2), \mathrm{Q}=(8,3)$.
(ii) Calculate 2 P , where $\mathrm{P}=(5,2)$.
6. (a) What is the maximum input size and length of output of hash function SHA-512. State the value of padding field and length fields if the message length is 1920 bits. What is the size of word (register used) in SHA-512 ?
(b) Alice uses Figamal Digital signature scheme to sign a document with the parameters : A cyclic group GF(19) with generator $a=10$ and private key $X=16$. He generated the random $K=5, \operatorname{gcd}(K, 18)=1$ as part of signing process. If Alice signed the document with hash value $m=14$, claculate the signature.
(c) Define Digital Signatures, its parameters, input/output, and general working of signing and verification algorithms. Define three types of attacks on a Digital signature.

