Name of Course	:	CBCS (LOCF) B.Sc. (H) Mathematics
Unique Paper Code	:	32351301
Name of Paper	:	BMATH305 – Theory of Real Functions
Semester	:	Ш
Duration	:	3 hours
Maximum Marks	:	75 Marks

Attempt any four questions. All questions carry equal marks.

1. Use the ϵ - δ definition of the limit to show that

$$\lim_{x \to 1} \frac{x^3 - 2x + 4}{x^2 + 4x - 3} = \frac{3}{2}.$$

Use the sequential criteria for limits, to show that the following limit does not exist

$$\limsup_{x\to 2}\left(\cos\left(\frac{1}{(x-2)^3}\right)\right),\,$$

where sgn is the signum function.

- 2. Let $r, L \in \mathbb{R}$ and $f: (-\infty, r) \to \mathbb{R}$ be a function. Prove that $\lim_{x \to -\infty} f(x) = L$ if and only if, for every sequence $\langle x_n \rangle$ in $(-\infty, r)$ such that if $\lim_{n \to \infty} x_n = -\infty$, then the sequence $\langle f(x_n) \rangle$ converges to L.
- 3. Suppose $f:[a,b] \to \mathbb{R}$ is a monotonically increasing function. If f assumes every value between f(a) and f(b) at least once, then show that f is continuous on [a, b].

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function on \mathbb{R} . Let $a, b \in \mathbb{R}$ be such that a < b, then prove that $f^{-1}(]a, b[]$ is an open interval in \mathbb{R} , where]a, b[denotes an open interval in \mathbb{R} .

4. Prove that the function $sin(x^2)$ is not uniformly continuous on $[0, \infty)$. However, it is uniformly continuous on [0, a], where a > 0 is any fixed real number.

Suppose $f:[0,2\pi] \to \mathbb{R}$ is continuous and $f(0) = f(2\pi)$. Prove that there exists at least one point $c \in [0,\pi]$ such that $f(c) = f(c + \pi)$.

5. Let $f(x) = |\cos x|, x \in (0,2\pi)$. Determine that where the function f is differentiable, and where it is not differentiable in the interval $(0,2\pi)$. Also, find the derivative at the points of differentiability.

Let f be a function defined on the real line \mathbb{R} and suppose that it satisfies the condition

 $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$.

Prove that f is a constant function.

6. Using the Taylor's theorem, find the approximate value of sin(0.4) with the error value being calculated up to less than 10^{-3} .

Let $x \in [0, 1]$ and $n \in \mathbb{N}$, show that the following inequality holds

$$\left| e^{x} - \left(1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} \right) \right| < \frac{3}{(n+1)!}.$$

Using this inequality, approximate the value of \sqrt{e} with an error value determined to be less than 10^{-2} .