Name of Course : CBCS (LOCF) B.Sc. (H) Mathematics
Unique Paper Code : 32351301
Name of Paper : BMATH305 - Theory of Real Functions
Semester : III
Duration : 3 hours
Maximum Marks : 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Use the $\epsilon-\delta$ definition of the limit to show that

$$
\lim _{x \rightarrow 1} \frac{x^{3}-2 x+4}{x^{2}+4 x-3}=\frac{3}{2} .
$$

Use the sequential criteria for limits, to show that the following limit does not exist

$$
\lim _{x \rightarrow 2} \operatorname{sgn}\left(\cos \left(\frac{1}{(x-2)^{3}}\right)\right)
$$

where sgn is the signum function.
2. Let $r, L \in \mathbb{R}$ and $f:(-\infty, r) \rightarrow \mathbb{R}$ be a function. Prove that $\lim _{x \rightarrow-\infty} f(x)=L$ if and only if, for every sequence $\left\langle x_{n}\right\rangle$ in $(-\infty, r)$ such that if $\lim _{n \rightarrow \infty} x_{n}=-\infty$, then the sequence $\left\langle f\left(x_{n}\right)\right\rangle$ converges to L.
3. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a monotonically increasing function. If f assumes every value between $f(a)$ and $f(b)$ at least once, then show that f is continuous on $[a, b]$.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on \mathbb{R}. Let $a, b \in \mathbb{R}$ be such that $a<b$, then prove that $f^{-1}(] a, b[)$ is an open interval in \mathbb{R}, where $] a, b[$ denotes an open interval in \mathbb{R}.
4. Prove that the function $\sin \left(x^{2}\right)$ is not uniformly continuous on $[0, \infty)$. However, it is uniformly continuous on $[0, a]$, where $a>0$ is any fixed real number.

Suppose $f:[0,2 \pi] \rightarrow \mathbb{R}$ is continuous and $f(0)=f(2 \pi)$. Prove that there exists at least one point $c \in[0, \pi]$ such that $f(c)=f(c+\pi)$.
5. Let $f(x)=|\cos x|, x \in(0,2 \pi)$. Determine that where the function f is differentiable, and where it is not differentiable in the interval $(0,2 \pi)$. Also, find the derivative at the points of differentiability.

Let f be a function defined on the real line \mathbb{R} and suppose that it satisfies the condition

$$
|f(x)-f(y)| \leq(x-y)^{2} \quad \text { for all } x, y \in \mathbb{R}
$$

Prove that f is a constant function.
6. Using the Taylor's theorem, find the approximate value of $\sin (0.4)$ with the error value being calculated up to less than 10^{-3}.

Let $x \in[0,1]$ and $n \in \mathbb{N}$, show that the following inequality holds

$$
\left|e^{x}-\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots .+\frac{x^{n}}{n!}\right)\right|<\frac{3}{(n+1)!}
$$

Using this inequality, approximate the value of \sqrt{e} with an error value determined to be less than 10^{-2}.

