

whin h

[This question paper contains 7 printed pages]

Your Roll No.

SI. No. of Q. Paper	$: \mathbf{7 4 6 5}$			
Unique Paper Code	$: 32351303$	\quad	Name of the Course	: B.Sc.(Hons.) Mathematics
:---	:---			
Name of the Paper	$:$ Multivariate Calculus			
Semester	$:$ III			
Time $: \mathbf{3}$ Hours	Maximum Marks : 75			

Instructions for Candidates :

(i) Write your Roll No. on the top immediately on receipt of this question paper.
(ii) All Sections are compulsory.
(iii) Attempt any five questions from each Section.
(iv) All questions carry equal marks.

> P.т.O.

7465

Section- I

1. Given that the function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3 x^{3}-3 y^{3}}{x^{2}-y^{2}} & \text { for } x^{2} \neq y^{2} \\
B & \text { otherwise }
\end{array}\right.
$$

is continuous at the origin, what is B ?
2. In physics, the wave equation is :
$\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$
and the heat equation is :
$\frac{\partial z}{\partial t}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$
Determine whether $\mathrm{z}=\sin 5 \mathrm{ct} \cos 5 \mathrm{x}$ satisfies the wave equation, the heat equation, or neither.
3. The radius and height of a right circular cone are measured with errors of at most 3% and 2%, respectively. Use increments to approximate the maximum possible percentage error in computing the volume of the cone using these measurements and the formula $\mathrm{V}=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}$.
4. If $f(x, y, z)=x y^{2} e^{x}$ and $x=2+3 t, y=6-4 t$, $z=t^{2}$. Compute $\frac{\mathrm{df}}{\mathrm{dt}}(1)$.
5. Sketch the level curve corresponding to $\mathrm{C}=1$ for the function $f(x, y)=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ and find a unit normal vector at the point $\mathrm{P}_{0}(2 \sqrt{3})$.
6. Find the point on the plane $2 x+y-z=5$ that is closest to the origin.

Section - II

7. Find the volume of the solid bounded above by the plane $z=y$ and below in the $x y$-plane by the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant.
8. Sketch the region of integration and then compute the integral $\int_{0}^{1} \int_{\mathrm{x}}^{2 \mathrm{x}} \mathrm{e}^{\mathrm{y}-\mathrm{x}} \mathrm{dy} \mathrm{dx}$ in 2 ways:
(a) with the given order of integration
(b) with the order of integration reversed
9. Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} y \sqrt{x^{2}+y^{2}} d y d x$ by converting to polar coordinates.
10. Find the volume of the tetrahedron bounded by the plane $2 x+y+3 z=6$ and the coordinate planes $x=0, y=0$ and $z=0$.
11. Compute $\iiint_{D} \frac{d x d y d z}{\sqrt{x^{2}+y^{2}+z^{2}}}$ where D is the solid sphere $x^{2}+y^{2}+z^{2} \leq 3$.
12. Use the change of variables to compute $\iint_{D} \frac{(x+y)^{4}}{(x+y)^{4}} d y d x$, where D is the triangular region bounded by the line $x+y=1$ and the coordinate axes.

Section - III

13. Find the work done by the force field $\vec{F}=\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{i}-\frac{y}{\sqrt{x^{2}+y^{2}}} \overline{\mathrm{j}}_{\text {when an object moves }}$ from $(a, 0)$ to $(0, a)$ on the path $x^{2}+y^{2}=a^{2}$.
14. Verify that the following line integral is independent of the path $\oint\left(3 x^{2}+2 x+y^{2}\right)$ $\mathrm{dx}+\left(2 \mathrm{xy}+\mathrm{y}^{3}\right) \mathrm{dy}$ where C is any path from $(0,0)$ to $(0,1)$.
15. Use Green's theorem to evaluate $\oint_{c}\left(x \sin x d x-\exp \left(y^{2}\right) d y\right)$ where C is the closed curve joining the points $(1,-1)(2,5)$ and $(-1,-1)$ in counterclockwise direction.
16. State Stoke's theorem and use it to evaluate \iint_{s} curI $\overline{\mathrm{F}} . \mathrm{dS}$ where $\overrightarrow{\mathrm{F}}=x z \overrightarrow{\mathrm{i}}+y z \overline{\mathrm{j}}+x y \overline{\mathrm{k}}$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ and above the xy -plane.
17. Use the divergence theorem to evaluate the surface integral $\iint_{s} \bar{F} . \bar{N} d S$, where $\bar{F}=\left(x^{2}+y^{2}-z^{2}\right) \bar{i}+$ comprised of the five faces of the unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$,
18. Evaluate $\iint 2 x d S$ where S is the portion of the plane $x+y+z=1$ with $x \geq 0, y \geq 0, z \geq 0$.
