Name of the Course	$:$ B.Sc. (Hons.) Mathematics CBCS (LOCF)
Unique Paper Code	$: 32351303$
Name of the Paper	$:$ BMATH307-Multivariate Calculus
Semester	$:$ III
Duration	$: 3$ Hours
Maximum Marks	$: 75$

Attempt any four questions. All questions carry equal marks.

1. Let $f(x, y)= \begin{cases}\frac{y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}$

Is the function f continuous at $(0,0)$? Justify your answer.
Find an equation for the tangent plane to the surface $z=f(x, y)$ defined above at the point $P_{0}\left(1,2, \frac{8}{5}\right)$.
Also find the directional derivative of $f(x, y)$ at $P_{0}(1,2)$ in the direction of $\mathbf{v}=3 \boldsymbol{i}-2 \boldsymbol{j}$.
2. Find the critical point and classify each point as a relative minimum, relative maximum, or a saddle point of

$$
f(x, y)=x y e^{-8\left(x^{2}+y^{2}\right)} .
$$

Find the maximum and minimum values of $f(x, y, z)=x y z$ subject to the constraint

$$
x^{2}+2 y^{2}+4 z^{2}=24 .
$$

Where is the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ differentiable?
3. Compute $\iint_{R} x e^{x y} d A$ where R is the rectangle $0 \leq x \leq 1,1 \leq y \leq 2$, using iterated integrals in both orders.

Evaluate $\iint_{R} 6 x^{2} y d A$ if R is the region bounded between the curves $y=x, y=1$ and $4 y=x^{2}$.
Find the area of the region bounded between the curves $r_{1}(\theta)=2+\sin 3 \theta$ and $r_{2}(\theta)=4-\cos 3 \theta$.
4. Find the mass of the ellipsoid $4 x^{2}+4 y^{2}+z^{2}=16$ lying above the $x y$-plane if the density is given by $\delta(x, y, z)=z$.

Determine the centroid of the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=1$ and below by the $x y$ plane plane where the density is given by $\delta(x, y, z)=z$.

Compute $\int_{0}^{1} \int_{0}^{1} x^{2} y d x d y$ by changing $u=x$ and $v=x y$.
5. Evaluate $\oint_{C}\left(x^{2} z d x-y x^{2} d y+3 d z\right)$ where C is the boundary of the triangle with vertices $(0,0,0),(1,1,0)$ and $(1,1,1)$.

Find a non-zero function h for which

$$
\boldsymbol{F}(x, y)=h(x)(x \sin y+y \cos y) \boldsymbol{i}+h(x)(x \cos y-y \sin y) \boldsymbol{j}
$$

is conservative.
Using line integral, find the area of the region enclosed by the asteroid

$$
x=a \cos ^{3} t, \quad y=a \sin ^{3} t(0 \leq t \leq 2 \pi)
$$

6. Find the mass of the lamina that is the portion of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=2$ with constant density δ_{0}.

Verify Stokes' Theorem if $\boldsymbol{F}(x, y, z)=(x-y) \boldsymbol{i}+(y-z) \boldsymbol{j}+(z-x) \boldsymbol{k}$ and S be the portion of the plane $x+y+z=1$ in the first octant assuming that the surface has an upward orientation.

Using the Divergence Theorem, evaluate $\iint_{S} \boldsymbol{F} . \boldsymbol{N} d S$, where $\boldsymbol{F}(x, y, z)=\left(z^{3} \boldsymbol{i}-x^{3} \boldsymbol{j}+y^{3} \boldsymbol{k}\right)$ and S is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, with outward unit normal vector \boldsymbol{N}.

