PROGRAMME NAME: BSc Mathematics

COURSE NAME: Numerical Methods

SEMESTER DURATION : July to December

WEEK	TOPIC(S)	TEACHING METHODOLOGY ADOPTED/ CONTINUOUS INTERNAL EVALUATION
1	Floating point representation and	Lectures
	computer arithmetic, Significant	
	digits; Errors: Round off error, Local	
	truncation error, Global truncation	
	error	
2	Order of a method, Convergence and	Demonstrations
	terminal conditions	
3	Bisection method, Secant method	Discussions
4	Regula-Falsi method, Newton-	Tutorials
	Raphson method	
5	Gaussian elimination method (with	Self –Instruction
	row pivoting), Gauss-Jordan method;	
	Iterative methods: Jacobi method,	
	Gauss-Seidel method	
6	Interpolation: Lagrange form, and	Presentation
	Newton form	
7	Finite difference operators	Case Study
8	Gregory-Newton forward and	Assignment
	backward difference interpolations	
9	Piecewise polynomial interpolation:	Lectures
	Linear, and Quadratic	
10	Numerical differentiation: First and	Self –Instruction
	second order derivatives	
11	Numerical integration: Trapezoid rule,	Assignment
	Simpson's rule.	
12	Extrapolation methods: Richardson	Discussion
	extrapolation, Romberg integration	
13	Ordinary differential equations:	Tutorials
	Euler's method	
14	Modified Euler's methods: Heun's	Case Study
	method, The Midpoint method	

Course Objectives: The goal of this paper is to acquaint students for the study of certain algorithms that uses numerical approximation for the problems of mathematical analysis. Also, the use of Computer Algebra Systems (CAS) by which the intractable problems can be solved both numerically and analytically.

Course Learning Outcomes : After completion of this course, students will be able to: i) Find the consequences of finite precision and the inherent limits of numerical methods. ii) Appropriate numerical methods to solve algebraic and transcendental equations. iii) How to solve first order initial value problems of ODE's numerically using Euler methods.