PROGRAME NAME: B.A PROGRAMME

COURSE NAME: ANALYTIC GEOMETRY AND APPLIED ALGEBRA

SEMESTER DURATION: JULY TO DECEMBER

Week	Topic(s)	Teaching Methodology Adopted/ Continuous Internal Evaluation
1.	Techniques for sketching	Presentations
	parabola with problem	
	solving.	
2.	Techniques for sketching	Lectures/Discussions
	Ellipse with problem solving.	
3.	Techniques for sketching	Lectures
	hyperbola with problem	
	solving.	
4.	Reflection properties of	Presentations/lectures
	parabola, Ellipse and	
	Hyperbola.	
5.	Classification of quadratic	Case Study/Practicals
	equation representing lines,	
	Parabola, Ellipse and	
	Hyperbola, Rotation of axis	
	second degree equations.	

6.	Rectangular coordinates in 3-	Practicals
	space with problems on	
	Spheres.	
7.	Rectangular coordinates in 3-	Lectures
	space with problems on	
	Cylindrical surfaces cones.	
8.	Vectors in coordinate	Demonstration/Lectures
	system, Vectors viewed	
	geometrically.	
9.	Vectors determined by	Lectures
	length and angle, Dot	
	product, Cross product and	
	their geometrical properties.	
10.	Parametric equations of lines	Practicals
	in plane.	
11.	Parametric equations of lines	Practicals
	in 3-space.	
12.	Latin squares, Table for a	Case study/Lectures
	finite group as a Latin square,	
	Latin squares as in design of	
	experiments.	

13.	Mathematical models for	Assignments
	matching jobs, Spelling	
	checker, Network reliability,	
	Street surveillance,	
	Scheduling meetings.	
14.	Interval graph modelling and	Assignments
	Influence model, Pitcher	
	pouring puzzle.	

Course Objectives: The course aims at identify curves and applying mathematical models in daily life problems studying geometric properties of different conic sections. The purpose of this course is to strengthen the mathematical skill along with the algebraic skills and concepts to assure success in the Algebra.

Course Learning Outcomes: The course will enable the students to:

- i) Identify and sketch curves.
- ii) Use three dimensional geometry using vectors.
- iii) Understand mathematical models to relate mathematics with daily life problems.