PROGRAMME NAME: B.Sc. (Hons.) Mathematics

COURSE NAME : Multivariate Calculus

SEMESTER DURATION : July to December

WEEK	TOPIC(S)	Teaching Methodology Adopted /Continuous Internal
1	Definition of functions of coveral	
T	Definition of functions of several	LECTURES
	two variables - Lovel surves and	
	surfaces Limits and continuity of	
	functions of two variables	
2	Partial differentiation and partial	DISCUSSION
2	derivative as slope and rate	DISCOSSION
	Higher order partial derivatives	
	Tangent planes incremental	
	approximation Total differential	
3	Differentiability Chain rule for one	
5	parameter. Two and three	
	independent parameters	
4	Directional derivatives. The	ASSIGNMENTS
	gradient. Maximal and normal	
	property of the gradient. Tangent	
	and normal lines.	
5	First and second partial derivative	TUTORIALS
	tests for relative extrema of	
	functions of two variables, and	
	absolute extrema of continuous	
	functions.	
6	Lagrange multipliers method for	PRESENTATIONS
	optimization problems with one	
	constraint, Definition of vector	
	field, Divergence and curl.	
7	Double integration over	DEMONSTRATION
	rectangular and nonrectangular	
	regions.	
8	Double integrals in polar co-	CASE STUDY
	ordinates, and triple integral over	
	a parallelopiped.	
9	Triple integral over solid regions,	LECTURES
	Volume by triple integrals, and	
	triple integration in cylindrical	
	coordinates.	
10	Triple integration in spherical	DISCUSSION
	coordinates, Change of variables in	
	double and triple integrals.	
11	Line integrals and its properties,	SELF -INSTRUCTIONS

	applications of line integrals: mass and work.	
12	Fundamental theorem for line integrals, Conservative vector fields and path independence	ASSIGNMENTS
13	Green's theorem for simply connected region, Area as a line integral, Definition of surface integrals.	TUTORIALS
14	Stokes' theorem and the divergence theorem.	PRESENTATIONS

Course Objectives: To understand the extension of the studies of single variable differential and integral calculus to functions of two or more independent variables. Also, the emphasis will be on the use of Computer Algebra Systems by which these concepts may be analyzed and visualized to have a better understanding. This course will facilitate to become aware of applications of multivariable calculus tools in physics, economics, optimization, and understanding the architecture of curves and surfaces in plane and space etc.

Course Learning Outcomes: This course will enable the students to:

- i) Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion.
- ii) Understand the maximization and minimization of multivariable functions subject to the given constraints on variables.
- iii) Learn about inter-relationship amongst the line integral, double and triple integral formulations.
- iv) Familiarize with Green's, Stokes' and Gauss divergence theorems.