PROGRAME NAME : B.A.(Programme)

COURSE NAME : Algebra

SEMESTER DURATION : January-May

Week	Topic(s)	Teaching	Meth	nodology
		Adopted/	Continuous	Internal
		Evaluation		
1	Fundamental Theorem of Algebra		Lectures	
	(statement only), Relation			
	between roots and coefficients of			
	nth degree equation			
2	Remainder and Factor Theorem,	Lect	tures/Discussio	on
	Solutions of cubic and			
	biquadratic equations, when			
	some conditions on roots of the			
	equation are given			
3	Symmetric functions of the roots	Assig	gnments/Quiz	zes
	for cubic and biquadratic			
	equations			
4	De Moivre's theorem (both	F	Presentations	
	integral and rational index),			
	Solutions of equations using			
	trigonometry and De Moivre's			
	theorem			
5	Expansion for cos , sin nx nx in		Case Study	
	terms of powers of cos , sin , x x			
	and cos , sin , n n x x in terms of			
	cosine and sine of multiples of x.			
6	Matrices, Types of matrices,	D	emonstartion	
	Introduction elementary			
	transformations			

7	Rank of a matrix. Invariance of	Lectures
	rank under elementary	
	transformations	
8	Reduction to normal (Echelon)	Discussion/Seminars
	form, Solutions of linear	
	homogeneous and	
	non-homogeneous equations	
	with number of equations and	
	unknowns up to four	
9	Cayley-Hamilton theorem,	Tutorials
	Characteristic roots and vectors.	
10	Integers modulo n, Permutations.	Discussion
11	Groups, subgroups, Examples of	Lectures/Practicals
	groups, subgroups and simple	
	theorems	
12	Lagrange's Theorem, Euler's	Practicals
	Theorem, Symmetry Groups of a	
	segment of a line, and regular	
	n-gons for $n = 3, 4, 5$ and 6; Rings	
	and subrings in the context of	
	C[0,1] and	
13	Definition and examples of vector	Case Study
	space, Subspace and its	
	properties	
14	Linear independence, Basis and	Case Study
	dimension of a vector pace	
1		

Course Objectives: Students will get conceptual understanding and the applicability of the subject matter. helps students to see how linear algebra can be applied to real-life situations. Modern concepts and notation are used

to introduce the various aspects of linear equations, leading readers easily to numerical computations and applications.

Course Learning Outcomes: The course will enable the students to understand: i) Solving higher order algebraic equations. ii) Solving simultaneous linear equations with at most four unknowns. iii) Overview of abstract algebra, which is useful in their higher studies.