PROGRAMME NAME: BSc Mathematics

COURSE NAME: Linear Algebra

SEMESTER DURATION : July to December

WEEK	TOPIC(S)	TEACHING METHODOLOGY ADOPTED/
	E a de ser etal e a contra a data e a de ser	
1	Fundamental operation with vectors	Lectures
	In Euclidean space n , Linear	
	combination of vectors, dot product	
	and their properties, Cauchy-Schwarz	
	inequality, Triangle inequality,	
	Projection vectors	
2	Some elementary results on vectors in	Demonstrations
	R" ; Matrices: Gauss–Jordan row	
	reduction, Reduced row echelon	
	form, Row equivalence, Rank	
3	Linear combination of vectors, Row	Discussions
	space, Eigenvalues, Eigenvectors,	
	Eigenspace, Characteristic	
	polynomials, Diagonalization of	
	matrices	
4	Definition and examples of vector	Tutorials
	space, Some elementary properties of	
	vector spaces.	
5	Subspace, Span of a set, a spanning	Self –Instruction
	set for an eigenspace, Linear	
	independence and dependence	
6	Basis and dimension of a vector space,	Presentation
	Maximal linearly independent sets,	
	Minimal spanning sets	
7	Application of rank: Homogenous and	Case Study
	non-homogenous systems of linear	
	equations; Coordinates of a vector in	
	ordered basis, Transition matrix Linear	
	transformations: Definition and	
	examples, Elementary properties.	
8	Linear transformations: Definition and	Assignment
	examples, Elementary properties.	
9	The matrix of a linear transformation,	Lectures
	Linear operator and similarity	
10	Application: Computer graphics,	Self –Instruction
	Fundamental movements in a plane,	
	Homogenous coordinates,	
	Composition of movements.	
11	Kernel and range of a linear	Assignment
	transformation, Statement of the	
	dimension theorem and examples	
12	One to one and onto linear	Discussion
	transformations, Invertible linear	
	transformations, isomorphism,	
	isomorphic vector spaces (to R ⁿ)	
13	Orthogonal and orthonormal vectors,	Tutorials
	orthogonal and orthonormal bases,	

PROGRAMME NAME: BSc Mathematics

COURSE NAME: Linear Algebra

SEMESTER DURATION : July to December

	orthogonal complement, statement of the projection theorem and examples. Orthogonal projection onto a subspace	
14	Application: Least square solutions for inconsistent systems, non-unique least square solutions	Case Study

Course Objectives: The objective of the course is to introduce the concept of vectors in n . The concepts of linear independence and dependence, rank and linear transformations has been explained through matrices. Various applications of vectors in computer graphics and movements in a plane has also been introduced.

Course Learning Outcomes : This course will enable the students to:

- i) Visualize the space n in terms of vectors and the interrelation of vectors with matrices, and their application to computer graphics.
- ii) Learn about vector spaces, linear transformations, transition matrix and similarity.
- iii) Find approximate solution of inconsistent system of linear equations.