PROGRAME NAME: : B.Sc (H) Mathematics COURSE NAME : Discrete Mathematics SEMESTER DURATION: July to December

1Definitions, Examples and basic properties of ordered sets, Order isomorphism, Hasse diagrams, dual of an ordered set, Duality principle, Maximal and minimal elements.Assignments2Building new ordered sets, Maps between ordered sets. [1] Chapter 1 (Sections 1.1 to 1.5 and 1.14 to 1.26, and 1.34 to 1.36) [3] Chapter 1 [Section 1 (1.1 to 1.3)]Examples/ Video3Lattices as ordered sets, Lattices as algebraic structures, SublatticesLectures4Products and homomorphisms. [1] Chapter 2 (Sections 2.1 to 2.19) [3] Chapter 1 [Section 1 (1.5 to 1.20)]Tutorials5Definitions, Examples and properties of Modular and Distributive lattices. Chapter 4 (Sections 4.1 to 4.9) [3] Chapter 1 [Section 2 (2.1 to 2.6).Discussion6M3 - N5 Theorem with applications, Complemented lattice, Relatively complemented lattice, sectionally complemented lattice. [1] Chapter 4 (Sections 4.10, and 4.11) [3] Chapter 1 [Section 2 (2.7 to 2.14)]Examples/ Video7Boolean Algebras, De Morgan's laws, Boolean polynomials.Examples/ Video8Boolean polynomial functions, Disjunctive normal form and conjunctive normal form. [3] Chapter 1 (Sections 3,Examples/ Video	nous tion
[1] Chapter 1 (Sections 1.1 to 1.5 and 1.14 to 1.26, and 1.34 to 1.36) [3] Chapter 1 [Section 1 (1.1 to 1.3)]3Lattices as ordered sets, Lattices as algebraic structures, Sublattices4Products and homomorphisms. [1] Chapter 2 (Sections 2.1 to 2.19) [3] Chapter 1 [Section 1 (1.5 to 1.20)]5Definitions, Examples and properties of Modular and 	
Sublattices4Products and homomorphisms. [1] Chapter 2 (Sections 2.1 to 2.19) [3] Chapter 1 [Section 1 (1.5 to 1.20)]Tutorials5Definitions, Examples and properties of Modular and Distributive lattices. Chapter 4 (Sections 4.1 to 4.9) [3] Chapter 1 [Section 2 (2.1 to 2.6).Discussion6M3 – N5 Theorem with applications, Complemented lattice, Relatively complemented lattice, sectionally complemented lattice. [1] Chapter 4 (Sections 4.10, and 4.11) [3] Chapter 1 [Section 2 (2.7 to 2.14)]Examples/ Video7Boolean Algebras, De Morgan's laws, Boolean polynomials.Examples/ Video8Boolean polynomial functions, Disjunctive normal formLectures	os
2.1 to 2.19) [3] Chapter 1 [Section 1 (1.5 to 1.20)]5Definitions, Examples and properties of Modular and Distributive lattices. Chapter 4 (Sections 4.1 to 4.9) [3] Chapter 1 [Section 2 (2.1 to 2.6).6M3 - N5 Theorem with applications, Complemented lattice, Relatively complemented lattice, sectionally complemented lattice. [1] Chapter 4 (Sections 4.10, and 4.11) [3] Chapter 1 [Section 2 (2.7 to 2.14)]7Boolean Algebras, De Morgan's laws, Boolean homomorphism, representation theorem. Boolean polynomials.Examples/ Video8Boolean polynomial functions, Disjunctive normal formLectures	
Distributive lattices. Chapter 4 (Sections 4.1 to 4.9) [3] Chapter 1 [Section 2 (2.1 to 2.6).6 $M_3 - N_5$ Theorem with applications, Complemented lattice, Relatively complemented lattice, sectionally complemented lattice. [1] Chapter 4 (Sections 4.10, and 4.11) [3] Chapter 1 [Section 2 (2.7 to 2.14)]7Boolean Algebras, De Morgan's laws, Boolean homomorphism, representation theorem. Boolean polynomials.Examples/ Video8Boolean polynomial functions, Disjunctive normal formLectures	
lattice, Relatively complemented lattice, sectionally complemented lattice. [1] Chapter 4 (Sections 4.10, and 4.11) [3] Chapter 1 [Section 2 (2.7 to 2.14)]7Boolean Algebras, De Morgan's laws, Boolean homomorphism, representation theorem. Boolean polynomials.8Boolean polynomial functions, Disjunctive normal formLectures	
homomorphism, representation theorem. Boolean polynomials.Lectures8Boolean polynomial functions, Disjunctive normal formLectures	
	os
and 4)	
9 Minimal forms of Boolean polynomial, Quinn-McCluskey Practicals method, Karnaugh diagrams. [3] Chapter 1 (Section 6)	
10Switching circuits and applications of switching circuits.Tutorials[3] Chapter 2 (Sections 7, and 8).	
11Introduction to graphs, Konigsberg Bridge problem,AssignmentsInstant insanity game. Definition, Examples and basicproperties of graphs.	
12Subgraphs, Pseudographs, Complete graphs, Bipartite graphs, Isomorphism of graphs. [2] Chapter 9 [Sections 9.1, 9.2 (9.2.1, 9.2.7), and 9.3]Practicals	
13Paths and circuits, Eulerian circuits, Hamiltonian cycles, Adjacency matrix, Weighted graph, Travelling salesman problem, shortest path.Lectures	
14Dijkstra's algorithm. [2] Chapter 10 [Sections 10.1 to 10.4Assignments(10.4.1 to 10.4.3)]	

Course Objectives:

This course aims at introducing the concepts of lattices, Boolean algebras, switching circuits and graph theory. The course discusses some important applications of Boolean algebra and graph theory in real life situations through switching circuits and shortest path algorithms.

Course Learning outcomes:

After the course, the student will be able to understand the concepts of:

- i) Lattices and their types;
- ii) Boolean algebra, switching circuits and their applications;

iii) Graphs, their types and its applications in study of shortest path algorithms.